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CONCERNING CONTINUA NOT SEPARATED BY ANY
NONAPOSYNDETIC SUBCONTINUUM

ELDON J. VOUGHT

Certain theorems that apply to compact, metric continua
that are separated by none of their subcontinua can be gene-
ralized and strengthened in those continua that are separated
by none of their nonaposyndetic subcontinua. For those of
the former type, if the continuum is aposyndetic at a point,
it is locally connected at the point. The same conclusion is
possible if the continuum is not separated by any nonaposyndetic
subcontinuum. Also, if a continuum is separated by no sub-
continuum and cut by no point, it is a simple closed curve.
A second result of this paper is to prove that if no non-
aposyndetic subcontinuum separates and no point cuts the
continuum, then it is a cyclically connected continuous curve
in fact this yields a characterization of hereditarily locally
connected, cyclically connected continua.

A third theorem characterizes an hereditarily locally
connected continuum as an aposyndetic continuum that is
separated by no nonaposyndetic subcontinuum. This is a
somewhat stronger result than the known equivalence of
hereditary local connectedness and hereditary aposyndesis.

A continuum is a closed, connected point set and the theorems
of this paper are true for those continua that are compact and metric.
If x is a point in the continuum M, then the continuum is aposyndetic
at x if for every point y in M — x, there exists an open set U and
continuum H such that xe UaHcM — y. Ifikfis aposyndetic at
x for each point x in M, then M is aposyndetic, and M is nonaposyndetic
if there is a point x in M such that M is not aposyndetic at x. By
this definition a degenerate continuum is an aposyndetic continuum.
The set S in M is said to separate M if M — S is not connected and
is said to cut M if for some pair of points x,yeM — S, every sub-
continuum of M intersecting both x and y must also intersect S. If
every pair of points in M is contained in some simple closed curve
lying in M, then M is cyclically connected. The continuum M is
hereditarily locally connected if M is locally connected and every
subcontinuum of M is locally connected, and M is hereditarily apo-
syndetic if it as well as each of its subcontinua is aposyndetic. In
what follows, a subcontinuum of M is aposyndetic or nonaposyndetic if,
with the relative topology from M, it is aposyndetic or nonaposyndetic
respectively.

Bing has proved that if a continuum that is separated by no
subcontinuum is aposyndetic at a point, it is locally connected at the
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