SYMMETRIC POSITIVE DEFINITE MULTILINEAR FUNCTIONALS WITH A GIVEN AUTOMORPHISM

MARVIN MARCUS AND STEPHEN PIERCE

Let V be an *n*-dimensional vector space over the real numbers R and let φ be a multilinear functional,

(1)
$$\varphi \colon \underset{1}{\overset{m}{\underset{1}{\rightarrowtail}}} V \longrightarrow R$$

i.e., $\varphi(x_1, \dots, x_m)$ is linear in each x_j separately, $j = 1, \dots, m$. Let H be a subgroup of the symmetric group S_m . Then φ is said to be symmetric with respect to H if

(2)
$$\varphi(x_{\sigma(1)}, \cdots, x_{\sigma(m)}) = \varphi(x_1, \cdots, x_m)$$

for all $\sigma \in H$ and all $x_j \in V$, $j = 1, \dots, m$. (In general, the range of φ may be a subset of some vector space over R.) Let $T: V \to V$ be a linear transformation. Then T is an *automorphism* with respect to φ if

(3)
$$\varphi(Tx_1, \cdots, Tx_m) = \varphi(x_1, \cdots, x_m)$$

for all $x_i \in V$, $i = 1, \dots, m$. It is easy to verify that the set $\mathfrak{A}(H, T)$ of all φ which are symmetric with respect to H and which satisfy (3) constitutes a subspace of the space of all multilinear functionals symmetric with respect to H. We denote this latter set by $M_m(V, H, R)$.

We shall say that φ is positive definite if

$$\varphi(x,\ldots,x)>0$$

for all nonzero x in V, and we shall denote the set of all positive definite φ in $\mathfrak{A}(H, T)$ by P(H, T). It can be readily verified that P(H, T) is a convex cone in $\mathfrak{A}(H, T)$. Our main results follow.

THEOREM 1. If P(H, T) is nonempty then (a) m is even

and

(b) every eigenvalue of T has modulus 1. If, in addition, T has only real eigenvalues then

(c) every elementary divisor of T is linear. Conversely if (a), (b) and (c) hold then P(H, T) is nonempty. Moreover, if P(H, T) is nonempty then $\mathfrak{A}(H, T)$ is the linear closure of P(H, T).

In Theorem 2 we shall investigate the dimension of $\mathfrak{A}(H, T)$ in the event P(H, T) is not empty. To do this we must introduce some combinatorial notation. Let $\Gamma_{m,n}$ denote the set of all sequences