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BOUNDARY BEHAVIOR OF RANDOM VALUED
HEAT POLYNOMIAL EXPANSIONS

RoBERT B. HUGHES

This paper is concerned with random series of the form
Se_o Xu(®)a,v,(x, t) where the X,’s are random variables, the
a,’s are real numbers, and the v,’s are heat polynomials as
introduced by P. C. Rosenbloom and D. V. Widder. The se-
quences {a,} are assumed to satisfy lim sup,-. | @, |>*(2n/e) =
1 which implies >\ a,v.(x, ¢) has |t| < 1 as its strip of con-
vergence, i.e,, it converges to a C*-solution of the heat equa-
tion in |f]| <1 and does not converge everywhere in any
larger open strip. Associated with each sequence {a,} is its
classification number from [0, 1] which indicates how rapidly
a, tends to zero. Assumptions are placed on the random
variables which imply that for almost every « the series
Sz o Xul@)awva(x, 1) has [t] <1 as its strip of convergence.

The main results of the paper are two theorems. The
first states that if {a,} has its classification number in [0, 1/2),
then for almost every o the lines ¢t =1 and ¢t = —1 form the
natural boundary for > X.(w)a.v.(x,?). The second is con-
cerned with sequences having their classification numbers in
(1/2.1]. The conclusion implies that for almost every « no
interval of either of the lines t =1 or { = —1 is part of the
natural boundary for >~ X,(0)a,v.(z, t).

The present work had it original motivation in the study of the
boundary behavior of random power series. These are series of the
form >, a,(®w)z" where the a,’s are complex valued random variables
and z is a complex number. Reference [1] contains a history of re-
sults in this area. One of the early results which helped to motivate
the first part of the proof of our Theorem 1 is due to Paley and
Zygmund in a 1932 paper [see 6, p.220]. In this theorem it is as-
sumed that Y7 ,a,2" is an ordinary power series with a finite radius
of convergence. Letting {¢,} be the sequence of Rademacher func-
tions, the conclusion is that for almost every ® in [0, 1] the series

= d.(w)a,z" has its circle of convergence as its natural boundary.

More recently [see 3] V. L. Shapiro has considered series of the
form .7, X.(w)H,(x) where the X,’s are random variables and

S, H(@)

is the spherical harmonic representation of a harmonic function in the
unit ball. The harmonic continuability across the boundary of the
unit ball of the functions X7, X,.(w)H,(x) was investigated. This
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