THE CONTENT OF SOME EXTREME SIMPLEXES

David Slepian

Formulae are presented that give the content of a simplex in Euclidean n-space: (\mathbf{i}) in terms of the lengths of and the angles between the vectors from a fixed point to the vertices of the simplex; (ii) in terms of the lengths of and the angles between the perpendiculars from a fixed point to the bounding faces of the simplex. We then determine the largest simplex whose vertices are given distances from a fixed point and we determine the smallest simplex whose faces are given distances from a fixed point. As special cases we find that the regular simplex is the largest simplex contained in a given sphere and is also the smallest simplex containing a given sphere.

1. Introduction and results. The n-dimensional simplex S_{n} in Euclidean n-space is the general term in the sequence of figures S_{0}, $S_{1}, S_{2}, S_{3} \ldots$ known respectively otherwise as point, line segment, triangle, tetrahedron, $\cdots . S_{n}$ is determined by $n+1$ points, P_{1}, P_{2}, \cdots, P_{n+1}, - its vertices -, which we assume do not lie in any ($n-1$)-dimensional hyperplane. Taken n at a time, these vertices determine ($n-1$)-dimensional hyperplanes $H_{1}, H_{2}, \cdots, H_{n+1}$, where H_{i} contains all vertices except P_{i}. We choose the normal of H_{i} so that P_{i} lies on the negative side of $H_{i} . \quad S_{n}$ can be regarded as the intersection of these $n+1$ nonpositive half spaces; it can also be regarded as the convex hull of its vertices.

Let Q be an arbitrary point. For $i=1,2, \cdots, n+1$, let $d_{i}>0$ be the distance from Q to P_{i} and let $e_{i}>0$ be the distance from Q to H_{i}. Let \boldsymbol{a}_{i} be the unit vector in the direction from Q to P_{i} and let \boldsymbol{b}_{i} be the unit vector from Q along the perpendicular to H_{i}. Let $r_{i j}=\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{\boldsymbol{j}}, s_{i j}=\boldsymbol{b}_{i} \cdot \boldsymbol{b}_{j}, i, j=1,2, \cdots, n+1$.

In this paper, we first show that the content, V_{n}, of S_{n} is given by

$$
\begin{align*}
n!V_{n} & =\left|\sum_{i, j} R_{i j} \frac{1}{d_{i}} \frac{1}{d_{j}}\right|^{1 / 2} \prod_{1}^{n+1} d_{i} \tag{1}\\
& =\left|\sum_{i, j} S_{i j} e_{i} e_{j}\right|^{n / 2} / \prod_{1}^{n+1} S_{i i}^{1 / 2} \tag{2}
\end{align*}
$$

for $n=1,2, \cdots$, where $R_{i j}$ is the cofactor of $r_{i j}$ in the $(n+1) \times$ $(n+1)$ matrix $r=\left(r_{i j}\right)$ and $S_{i j}$ is the cofactor of $s_{i j}$ in $s=\left(s_{i j}\right)$. Next we determine the largest simplex with given d values and the smallest simplex containing Q with given e values. We find

$$
\begin{equation*}
n!V_{\max }=\theta^{-1 / 2} \prod_{1}^{n+1}\left(\theta+d_{i}^{2}\right)^{1 / 2}, r_{i j}^{\prime}=-\frac{\theta}{d_{i} d_{j}}, \tag{3}
\end{equation*}
$$

