THE CONTENT OF SOME EXTREME SIMPLEXES

DAVID SLEPIAN

Formulae are presented that give the content of a simplex in Euclidean n-space: (i) in terms of the lengths of and the angles between the vectors from a fixed point to the vertices of the simplex; (ii) in terms of the lengths of and the angles between the perpendiculars from a fixed point to the bounding faces of the simplex. We then determine the largest simplex whose vertices are given distances from a fixed point and we determine the smallest simplex whose faces are given distances from a fixed point. As special cases we find that the regular simplex is the largest simplex contained in a given sphere and is also the smallest simplex containing a given sphere.

1. Introduction and results. The *n*-dimensional simplex S_n in Euclidean *n*-space is the general term in the sequence of figures S_0 , $S_1, S_2, S_3 \cdots$ known respectively otherwise as point, line segment, triangle, tetrahedron, \cdots . S_n is determined by n + 1 points, P_1 , P_2, \cdots, P_{n+1} , - its vertices -, which we assume do not lie in any (n-1)-dimensional hyperplane. Taken n at a time, these vertices determine (n-1)-dimensional hyperplanes $H_1, H_2, \cdots, H_{n+1}$, where H_i contains all vertices except P_i . We choose the normal of H_i so that P_i lies on the negative side of H_i . S_n can be regarded as the intersection of these n + 1 nonpositive half spaces; it can also be regarded as the convex hull of its vertices.

Let Q be an arbitrary point. For $i = 1, 2, \dots, n + 1$, let $d_i > 0$ be the distance from Q to P_i and let $e_i > 0$ be the distance from Q to H_i . Let a_i be the unit vector in the direction from Q to P_i and let b_i be the unit vector from Q along the perpendicular to H_i . Let $r_{ij} = a_i \cdot a_j, s_{ij} = b_i \cdot b_j, i, j = 1, 2, \dots, n + 1$.

In this paper, we first show that the content, V_n , of S_n is given by

(1)
$$n! V_n = \left|\sum_{i,j} R_{ij} \frac{1}{d_i} \frac{1}{d_j}\right|^{1/2} \prod_{i=1}^{n+1} d_i$$

$$(\,2\,) = \left|\sum_{i,j}\,S_{ij}e_ie_j
ight|^{n/2}\!\!\left/\prod_1^{n+1}\,S_{ii}^{1/2}
ight|^{n/2}$$

for $n = 1, 2, \dots$, where R_{ij} is the cofactor of r_{ij} in the $(n + 1) \times (n + 1)$ matrix $r = (r_{ij})$ and S_{ij} is the cofactor of s_{ij} in $s = (s_{ij})$. Next we determine the largest simplex with given d values and the smallest simplex containing Q with given e values. We find

(3)
$$n! V_{\max} = \theta^{-1/2} \prod_{i=1}^{n+1} (\theta + d_i^2)^{1/2}, r'_{ij} = -\frac{\theta}{d_i d_j},$$