THE CLOSED PRIME SUBGROUPS OF CERTAIN ORDERED PERMUTATION GROUPS

STEPHEN H. MCCLEARY

The group $G = A(\Omega)$ of all order-preserving permutations of a chain Ω becomes a lattice-ordered group when ordered pointwise, i.e., $f \leq g$ if and only if $\beta f \leq \beta g$ for all $\beta \in \Omega$. Lloyd showed that for each $\omega \in \Omega$, the stabilizer subgroup $G_{\omega} =$ $\{g \in G \mid \omega g = \omega\}$ is a closed prime subgroup of G. Our main result (Theorem 11) states that besides G itself, these subgroups, together with the stabilizer subgroups of Dedekind cuts of Ω , comprise all of the closed prime subgroups of G.

Actually, G need not be all of $A(\Omega)$. In § 2, we use Lloyd's result to show that for depressible or complete subgroups G of $A(\Omega)$, all stabilizer subgroups are closed. We find in § 3 that every closed convex *l*-subgroup C of G is of the form $C = \{g \in G \mid \overline{Ag} = \overline{A}\}$ for some collection \overline{A} of points and cuts of Ω . In § 4 we prove the main theorem (stated above) for depressible groups. Finally, this theorem is applied to the question of the extent to which the *l*-group G determines the chain Ω , which was first considered by Holland [4]; and to the determination of the *l*-automorphisms of G, considered by Lloyd [5].

2. Stabilizer subgroups. Let Ω be a chain. A permutation g of Ω is said to *preserve order* if $\alpha \leq \beta$ implies $\alpha g \leq \beta g$ for all $\alpha, \beta \in \Omega$. The group $A(\Omega)$ of all order-preserving permutations (o-permutations) of Ω , ordered pointwise, is a lattice-ordered group (*l*-group). $A(\Omega)$ is not assumed to be transitive. For elementary information about *l*-groups, see [1].

 $\overline{\Omega}$ will denote the completion of Ω by Dedekind cuts (without end points unless these end points belong to Ω). We shall consider Ω to be a subchain of $\overline{\Omega}$. Each $g \in A(\Omega)$ can be extended to $\overline{\Omega}$ by defining $\overline{\omega}g(\overline{\omega}\in\overline{\Omega})$ to be $\sup \{\beta g \mid \beta \in \Omega, \beta \leq \overline{\omega}\}$. Thus $A(\Omega)$ can be considered to be an *l*-subgroup of $A(\overline{\Omega})$, i.e., a subgroup which is also a sublattice.

Let G be an *l*-subgroup of $A(\Omega)$, and thus also of $A(\overline{\Omega})$. G, or more properly the pair (G, Ω) , is called an ordered permutation group. Holland [3, Th. 2] showed that every abstract *l*-group L is *l*-isomorphic to such a G. A subgroup H of G is convex if $h_1 \leq g \leq h_2$, with $h_1, h_2 \in H$ and $g \in G$, implies $g \in H$. H is a prime subgroup of G if H is a convex *l*-subgroup of G and if $g_1 \wedge g_2 = 1$, with $g_1, g_2 \in G$, implies $g_1 \in H$ or $g_2 \in H$. For $\overline{\omega} \in \overline{\Omega}$, we define the stabilizer subgroup $G_{\overline{\omega}}$ to be

$$\{g\in G\,|\,ar{\omega}g\,=\,ar{\omega}\}$$
 ,