ON $(\mathfrak{m} - \mathfrak{n})$ PRODUCTS OF BOOLEAN ALGEBRAS

R. H. LA GRANGE

This discussion begins with the problem of whether or not all (m-n) products of an indexed set $\{\mathfrak{A}_t\}_{t \in T}$ of Boolean algebras can be obtained as m-extensions of a particular algebra \mathscr{F}_n^* . The construction of \mathscr{F}_n^* is similar to the construction of the Boolean product of $\{\mathfrak{A}_t\}_{t \in T}$; however the \mathscr{A}_t are embedded in \mathscr{F}_n^* in such a way that their images are n-independent. If there is a cardinal number n', satisfying $n < n' \leq m$, then (m - n') products are not obtainable in this manner. For the case n = m an example shows the answer to be negative. It is explained how the class of m-extensions of \mathscr{F}_n^* is situated in the class of all (m - n) products of $\{\mathfrak{A}_t\}_{t \in T}$. A set of m-representable Boolean algebras is given for which the minimal (m - n) product is not m-representable and for which there is no smallest (m - n) product.

These problems have been proposed by R. Sikorski (see [2]). Concerning $\{\mathfrak{A}_t\}_{t\in T}$, it is assumed throughout that each of these algebras has at least four elements. m and n will always denote infinite cardinals with $\mathfrak{n} \leq \mathfrak{m}$. All definitions are taken from [2]. An m-homomorphism is a homomorphism that is conditionally m-complete. We denote the class of $(\mathfrak{m} - \mathfrak{n})$ products of $\{\mathfrak{A}_t\}_{t\in T}$ by $P_{\mathfrak{n}}$ and the class of $(\mathfrak{m} - \mathfrak{0})$ products by P. Let $\{\{i_t\}_{t\in T}, \mathfrak{M}\}$ and $\{\{j_t\}_{t\in T}, \mathfrak{S}\}$ be elements of P. We say that

$$\{\{i_t\}_{t \in T}, \mathscr{B}\} \leq \{\{j_t\}_{t \in T}, \mathfrak{S}\}$$

provided there is an m-homomorphism h from \mathfrak{C} onto \mathfrak{M} such that $h \circ j_t = i_t$ for $t \in T$. The relation " \leq " is a quasi-ordering of P. Two $(\mathfrak{m} - 0)$ products are isomorphic if each is \leq to the other.

The particular product, $\{\{g_t^*\}_{t \in T}, \mathscr{F}_n^*\}$ of $\{\mathfrak{A}_t\}_{t \in T}$ mentioned above is defined as follows. For each $t \in T$ let X_t be the Stone space of \mathfrak{A}_t and let g_t be an isomorphism from \mathfrak{A}_t onto the field \mathscr{F}_t of all open and closed subsets of X_t . Let X be the Cartesian product of the sets X_t , and for each $t \in T$ and each $b \in \mathfrak{A}_t$, set

(1)
$$g_t^*(b) = [x \in X: x(t) \in g_t(b)]$$
.

Let $G_{\mathfrak{n}}$ be the set of all subsets *a* of *X* which satisfy the following condition:

$$a = \bigcap_{t \in S} g_t^*(b_t)$$
 where $b_t \in \mathfrak{A}_t, S \subseteq T$ and $\overline{\bar{S}} \leq \mathfrak{n}$.

Finally, let $\mathscr{F}_{\mathfrak{n}}^*$ be the field of subsets of X which is generated by $G_{\mathfrak{n}}$.