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ON (m —n) PRODUCTS OF BOOLEAN ALGEBRAS
R. H. LA GRANGE

This discussion begins with the problem of whether or not
all (m —n) products of an indexed set {2.};.r of Boolean
algebras can be obtained as m-extensions of a particular
algebra & F. The construction of &~ » is similar to the
construction of the Boolean product of {¥;};.; however the &7,
are embedded in 7 in such a way that their images are
n-independent. If there is a cardinal number n’, satisfying
n<n <m, then (m —1n’) products are not obtainable in this
manner, For the case 1 = m an example shows the answer to
be negative. It is explained how the class of m-extensions of
7 is situated in the class of all (m — n) produets of {Us}ier.
A set of m-representable Boolean algebras is given for which
the minimal (m — n) produet is not m-representable and for
which there is no smallest (m — n) product.

These problems have been proposed by R. Sikorski (see [2]).
Concerning {,},.,, it is assumed throughout that each of these
algebras has at least four elements. m and n will always denote in-
finite cardinals with n < m. All definitions are taken from [2]. An
m-homomorphism is a homomorphism that is conditionally m-complete.
We denote the class of (m — n) products of {2,},., by P, and the class
of (m — 0) products by P. Let {{¢,},cr, <&} and {{j.}.r, €} be elements
of P. We say that

{{ickeer, ZY = {{Jibier ¢}

provided there is an ni-homomorphism % from € onto <£Z such that
hoj, = i, for te T. The relation “<” is a quasi-ordering of P. Two
(m — 0) products are isomorphic if each is < to the other.

The particular product, {{¢;},.r, F, *} of {.},., mentioned above
is defined as follows. For each te T let X, be the Stone space of 2,
and let g, be an isomorphism from 2, onto the field &, of all open
and closed subsets of X,. Let X be the Cartesian product of the sets
X., and for each te T and each be 2, set

(1) gi(b) = [ve X: a(t) € g.(0)} .
Let G, be the set of all subsets a of X which satisfy the following
condition:
a = ) g#(b) where b,e%,, SS T and S<u.
tesS

Finally, let 7, * be the field of subsets of X which is generated by
G,
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