ON $(\mathfrak{n}-\mathfrak{n})$ PRODUCTS OF BOOLEAN ALGEBRAS

Abstract

R. H. La Grange

This discussion begins with the problem of whether or not all ($\mathfrak{m}-\mathfrak{n}$) products of an indexed set $\left\{\left\{\mathcal{R}_{t}\right\}_{t \in T}\right.$ of Boolean algebras can be obtained as m-extensions of a particular algebra $\mathscr{F}_{\mathfrak{n}}^{*}$. The construction of $\mathscr{F}_{\mathfrak{n}}^{*}$ is similar to the construction of the Boolean product of $\left\{\mathfrak{R}_{t}\right\}_{t \in T}$; however the \mathscr{A}_{t} are embedded in \mathscr{F}_{n}^{*} in such a way that their images are n-independent. If there is a cardinal number n^{\prime}, satisfying $n<n^{\prime} \leqq n$, then ($m-n^{\prime}$) products are not obtainable in this manner. For the case $\mathfrak{n}=m$ an example shows the answer to be negative. It is explained how the class of m-extensions of \mathscr{F}_{n}^{*} is situated in the class of all $(\mathfrak{n t}-\mathfrak{n})$ products of $\left\{\mathfrak{N}_{t}\right\}_{t \in T}$. A set of m-representable Boolean algebras is given for which the minimal ($\mathrm{ml}-\mathrm{n}$) product is not n -representable and for which there is no smallest ($\mathfrak{m}-\mathfrak{n}$) product.

These problems have been proposed by R. Sikorski (see [2]). Concerning $\left\{\mathcal{H}_{t}\right\}_{t \in T T}$, it is assumed throughout that each of these algebras has at least four elements. \mathfrak{m} and \mathfrak{n} will always denote infinite cardinals with $\mathfrak{n} \leqq \mathfrak{m}$. All definitions are taken from [2]. An \mathfrak{m}-homomorphism is a homomorphism that is conditionally m-complete. We denote the class of $(\mathfrak{m}-\mathfrak{n})$ products of $\left\{\mathfrak{N}_{t}\right\}_{t \in T}$ by $\boldsymbol{P}_{\mathfrak{n}}$ and the class of ($\mathrm{m}-0$) products by \boldsymbol{P}. Let $\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\}$ and $\left\{\left\{j_{t}\right\}_{t \in T}\right.$, © $\}$ be elements of \boldsymbol{P}. We say that

$$
\left\{\left\{i_{t}\right\}_{t \in T}, \mathscr{B}\right\} \leqq\left\{\left\{j_{t}\right\}_{t \in T}, \text { ©ऽ }\right\}
$$

provided there is an nt-homomorphism h from \mathbb{C} onto \mathscr{B} such that $h \circ j_{t}=i_{t}$ for $t \in T$. The relation " \leqq " is a quasi-ordering of \boldsymbol{P}. Two ($\mathrm{nt}-0$) products are isomorphic if each is \leqq to the other.

The particular product, $\left\{\left\{g_{t}^{*}\right\}_{t \in T}, \mathscr{F}_{1}^{*}\right\}$ of $\left\{\mathfrak{R}_{t}\right\}_{t \in T}$ mentioned above is defined as follows. For each $t \in T$ let X_{t} be the Stone space of \mathfrak{A}_{t} and let g_{t} be an isomorphism from \mathfrak{N}_{t} onto the field \mathscr{F}_{t} of all open and closed subsets of X_{t}. Let X be the Cartesian product of the sets X_{t}, and for each $t \in T$ and each $b \in \mathfrak{N}_{t}$, set

$$
\begin{equation*}
g_{t}^{*}(b)=\left[x \in X: x(t) \in g_{t}(b)\right\} . \tag{1}
\end{equation*}
$$

Let G_{11} be the set of all subsets a of X which satisfy the following condition:

$$
a=\bigcap_{t \in S} g_{t}^{*}\left(b_{t}\right) \text { where } b_{t} \in \mathfrak{A}_{t}, S \subseteq T \text { and } \overline{\bar{S}} \leqq \mathfrak{H}
$$

Finally, let \mathscr{F}_{n}^{*} be the field of subsets of X which is generated by G_{n}.

