COHOMOLOGY OF NONASSOCIATIVE ALGEBRAS

NEAL D. GLASSMAN

A cohomology theory is constructed for an arbitrary nonassociative (not necessarily associative) algebra satisfying a set of identities, within which the associative and Lie theories are special cases.

1. Exactness of the fundamental sequence through H³. Let *T* be a set of identities, \mathscr{A} a *T*-algebra over a commutative ring *K* with unit, *M* a *T*-bimodule for \mathscr{A} . When *T* is clear we call *M* an \mathscr{A} -bimodule. Let $(U(\mathscr{A}), \lambda_{\mathscr{A}}, \rho_{\mathscr{A}})$ be the universal *T*-multiplication envelope of \mathscr{A} with $\lambda_{\mathscr{A}}, \rho_{\mathscr{A}}$ the canonical maps. When $\lambda_{\mathscr{A}}, \rho_{\mathscr{A}}$ are obvious, we write $U(\mathscr{A})$. Let $D(\mathscr{A}, M)$ be the *K*-module (under pointwise addition and scalar multiplication) of derivations from \mathscr{A} to *M*. $\nu \in \operatorname{Hom}_{U(\mathscr{A})}(M_1, M_2)$ induces $D(\mathscr{A}, \nu) \in \operatorname{Hom}_{K}(D(\mathscr{A}, M_1), D(\mathscr{A}, M_2))$ in the obvious fashion. For further details of these objects see Jacobson [16].

Regarding $U(\mathscr{A})$ as the free \mathscr{A} -bimodule on one generator, we define, for $u \in U(\mathscr{A}), f_u: U(\mathscr{A}) \to U(\mathscr{A})$ such that $1_{U(\mathscr{A})}f_u = u$. $D(\mathscr{A}, U(\mathscr{A}))$ is a left $U(\mathscr{A})$ -module under the multiplication $ud = dD(\mathscr{A}, f_u)$.

DEFINITION. An inner derivation functor is an epimorphism preserving subfunctor of $D(\mathscr{A}, \cdot)$.

For example, suppose \mathscr{A} is Jordan. Define $J(\mathscr{A}, M)$ to be the *K*-module generated by all mappings of the form $\sum_i [R_{a_i}R_{m_i}]$ where $a_i \in \mathscr{A}$ and $m_i \in M$. Then $J(\mathscr{A}, M) \subseteq D(\mathscr{A}, M)$ and J is an inner derivation functor.

THEOREM 1. There is a one-to-one correspondence between the set of inner derivation functors and the set of left $U(\mathcal{A})$ submodules of $D(\mathcal{A}, U(\mathcal{A}))$.

Proof. If $J(\mathscr{A}, \) \subseteq D(\mathscr{A}, \)$ is an inner derivation functor, define $\theta(J) = J(\mathscr{A}, U(\mathscr{A}))$. We need to define an inverse $\psi = \theta^{-1}$. Let $\Lambda \subseteq D(\mathscr{A}, U(\mathscr{A}))$ be a sub- $U(\mathscr{A})$ module. If $M = \sum_{i \in \Gamma} \bigoplus U(\mathscr{A})$, define $J(\mathscr{A}, M) = \sum_{i \in \Gamma} \bigoplus \Lambda_i$, where $\Lambda_i \simeq \Lambda$ for all *i*. If *M* is any unital right $U(\mathscr{A})$ -module, let X_M be the free unital right $U(\mathscr{A})$ module on the set *M*. Let Ω_M be the composite $\sum_{m \in M} \bigoplus \Lambda_m = J(\mathscr{A},$ $X_M) \xrightarrow{i} \sum_{m \in M} \bigoplus D(\mathscr{A}, X_m) = D(\mathscr{A}, X_M) \xrightarrow{D(\mathscr{A}, M)} D(\mathscr{A}, M)$, where Π is the canonical projection $\Pi: X_M \to M$. Define $J(\mathscr{A}, M) = \text{image } \Omega_M$.