ON A CERTAIN GENERALIZATION OF \leq_p SPACES

JEANNE LADUKE

An \mathscr{C}_p space is a product of finite-dimensional c_p spaces with a weighted \mathcal{L}_p norm on the product. The first theorem of this paper yields an isometric embedding of \mathscr{C}_p into an appropriate c_p space. From this theorem, known results about c_p are used to deduce, among other things, the Clarkson inequalities for \mathscr{C}_p , 1 , and hence, the uniform con $vexity of <math>\mathscr{C}_p$ for 1 .

The second theorem characterizes the conjugate space of \mathscr{C}_p for $0 . This result is then used to describe some spaces of multipliers. Let <math>\mathscr{A}$ and \mathscr{B} be \mathscr{C}_p spaces, $1 \leq p \leq \infty$, or \mathscr{C}_0 . The spaces $\mathscr{M}(\mathscr{A}, \mathscr{B})$ of multipliers from \mathscr{A} to \mathscr{B} have previously been identified with certain subspaces of $\mathscr{C}(I)$ and determined precisely in some cases. The third theorem is a complete description of these multiplier spaces: the cases $0 are included and the spaces <math>\mathscr{M}(\mathscr{A}, \mathscr{B})$ are determined precisely for all pairs \mathscr{A}, \mathscr{B} .

1. Definitions. First, we repeat the definition of c_p (called C_p by Dunford and Schwartz [1], S_p by Gohberg and Krein [2], and c_p by McCarthy [6]). See also [3, D. 37] for the case where H is finite-dimensional.

DEFINITION 1.1. Let H be a Hilbert space and let X be a compact operator on H. Then XX^* is positive and compact and hence has a unique positive square root which is also compact. We denote this square root by |X|. Now let μ_n be the, at most countably many, nonzero eigenvalues of |X| enumerated with their multiplicity and arranged in a decreasing sequence as $\mu_1 \ge \mu_2 \ge \cdots \ge 0$. For 0 , we define

$$||X||_{\phi_p} = \left(\sum\limits_{n=1}^\infty \mu_n^p
ight)^{1/p}$$

whether finite or infinite; and we define

$$||X||_{\phi_{\infty}} = \sup \left\{ \mu_n : 1 \leq n < \infty
ight\} = \mu_1$$
 .

Equivalently, [1, p. 1089], $||X||_{\phi_{\infty}}$ is the operator norm of X. Then c_p consists of all compact X with $||X||_{\phi_n}$ finite.

See [1], [2], and [6] for a detailed treatment of c_p spaces and for additional references. Also, [3, Appendix D] contains a number of results in case H is finite-dimensional.