ON MATRICES WITH A RESTRICTED NUMBER OF DIAGONAL VALUES

J. E. H. Elliott

This note confirms the following conjecture of Marcus: Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix of strictly positive entries with at most $(n-1)$ distinct diagonal values, then A is singular. We also show that there exist matrices with strictly positive entries with n diagonal values which are nonsingular.

Definitions. If A is an $n \times n$ matrix and σ is a permutation of $\{1,2, \cdots, n\}$, then the product $a_{1, \sigma(1)} \cdot a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}$ is called the $d i$ agonal of A corresponding to σ.

If A_{1}, A_{2} are two $n \times n$ matrices, then A_{1} is called a diagonate of A_{2} if A_{1} can be obtained from A_{2} by a finite number of operations of the following kinds:
(i) Multiplication of all entries of some row, (or column) by some $c>0$.
(ii) Interchange of any two rows (or columns).

The notation $A[\mu \mid \gamma], A(\mu \mid \gamma)$ is that of [1].

Preliminary Remarks. (i) The property of being a diagonate is an equivalence relation.
(ii) If a matrix is singular (nonsingular), then each of its diagonates is singular (nonsingular).
(iii) If a matrix A_{1} has diagonal values $\rho_{1}<\rho_{2}<\cdots<\rho_{r}$ then a diagonate A_{2} of A_{1} has diagonal values $k \rho_{1}<k \rho_{2}<\cdots k \rho_{r}$, where $k=k\left(A_{2}\right)$, and $\left|\operatorname{det} A_{1}\right|=\left|k \operatorname{det} A_{2}\right|$.
(iv) If a matrix has strictly positive (positive) entries, then each of its diagonates has strictly positive (positive) entries.

Lemma. If $X=\left(x^{e(i, j)}\right)$ is an $n \times n$ matrix with entries in an extension $F(x)$ of the real field F, where $e(i, j)$ are nonnegative rational integers $i, j=1,2, \cdots n$ and $e(1, j)=0$ for $j=1,2, \cdots n$, then
$\operatorname{det} X=(x-1)^{n-1} g(x)$, where $g(x)$ is a polynomial in x with rational integral coefficients.

The proof of the lemma is by induction. The result is trivial for $n=2$. The result is therefore assumed to hold for all $n<N$, and $N>2$. If $n=N$, subtracting the first row of X from the second and expanding X by its second row, we have

