ON MATRICES WITH A RESTRICTED NUMBER OF DIAGONAL VALUES

J. E. H. Elliott

This note confirms the following conjecture of Marcus: Let $A = (a_{ij})$ be an $n \times n$ matrix of strictly positive entries with at most (n-1) distinct diagonal values, then A is singular. We also show that there exist matrices with strictly positive entries with n diagonal values which are nonsingular.

DEFINITIONS. If A is an $n \times n$ matrix and σ is a permutation of $\{1, 2, \dots, n\}$, then the product $a_{1,\sigma(1)} \cdot a_{2,\sigma(2)} \cdots a_{n,\sigma(n)}$ is called the *diagonal* of A corresponding to σ .

If A_1 , A_2 are two $n \times n$ matrices, then A_1 is called a *diagonate* of A_2 if A_1 can be obtained from A_2 by a finite number of operations of the following kinds:

(i) Multiplication of all entries of some row, (or column) by some c > 0.

(ii) Interchange of any two rows (or columns).

The notation $A[\mu | \gamma]$, $A(\mu | \gamma)$ is that of [1].

PRELIMINARY REMARKS. (i) The property of being a diagonate is an equivalence relation.

(ii) If a matrix is singular (nonsingular), then each of its diagonates is singular (nonsingular).

(iii) If a matrix A_1 has diagonal values $\rho_1 < \rho_2 < \cdots < \rho_r$ then a diagonate A_2 of A_1 has diagonal values $k\rho_1 < k\rho_2 < \cdots k\rho_r$, where $k = k(A_2)$, and $|\det A_1| = |k \det A_2|$.

(iv) If a matrix has strictly positive (positive) entries, then each of its diagonates has strictly positive (positive) entries.

LEMMA. If $X = (x^{e(i,j)})$ is an $n \times n$ matrix with entries in an extension F(x) of the real field F, where e(i, j) are nonnegative rational integers $i, j = 1, 2, \dots n$ and e(1, j) = 0 for $j = 1, 2, \dots n$, then

det $X = (x - 1)^{n-1}g(x)$, where g(x) is a polynomial in x with rational integral coefficients.

The proof of the lemma is by induction. The result is trivial for n = 2. The result is therefore assumed to hold for all n < N, and N > 2. If n = N, subtracting the first row of X from the second and expanding X by its second row, we have