CONGRUENCE FORMULAS OBTAINED BY COUNTING IRREDUCIBLES

Michael L. Fredman

Abstract

This paper shows how a class of congruence formulas can be generated by generalizing the process of counting irreducibles in polynomial rings. Among the specific applications of the methods in this paper are a solution to the necklace problem, as well as an enumeration of the solutions to certain Diophantine equations.

Let F denote the finite field with q elements and let $F[x]$ denote the polynomial ring over F. Let $\psi(n)$ denote the number of monic irreducible polynomials of degree n in $F[x]$. It is known that

$$
\begin{equation*}
\sum_{d \mid n} \mu(n / d) q^{d}=n \psi(n) \quad \text { when } \quad n \geqq 1, \tag{1}
\end{equation*}
$$

where μ denotes the Möbius function. Since ψ is integer valued it follows that

$$
\begin{equation*}
\sum_{d \mid n} \mu(n / d) q^{d} \equiv 0 \bmod n, \tag{2}
\end{equation*}
$$

whenever q is the power of a prime. This paper shows that the process of counting irreducible in polynomials rings generalizes, and that this generalization leads to a generalized congruence formula.

Let G be any commutative multiplicative semigroup with cancellation, with an identity element, 1 , and with no other unit elements. Suppose that all elements in G can be factored into irreducibles and that the factorization is unique. The positive integers and the monic polynomials in the above discussion provide examples of such a structure. Now assume that G has a valuation function v with the following properties:
(a) v is integer valued.
(b) $v(1)=0$ and $v(s)>0$ if $s \neq 1$.
(c) $\quad v(s t)=v(s)+v(t)$.
(d) $D(k)=\sum_{s \in G, v(s)=k} 1$ is finite. In other words v
assumes a particular value no more than a finite number of times. The monic polynomials are an example of this kind of structure where $v(Q(x))=$ the degree of Q. Throughout this paper we reserve the use of the letter p to denote irreducibles. Now let
(e) $\quad \psi(n)=\sum_{p \in G, v(p)=n} 1$.

In the case of the monic polynomials, $D(n)=q^{n}$ and ψ is given by equation (1). In this paper we show that ψ is uniquely determined

