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ON MEARLY COMMUTATIVE DEGREE
ONE ALGEBRAS

JOHN D. ARRISON AND MicHAEL RicH

The main result in this paper establishes that there do
not exist nodal algebras A satisfying the conditions:
(I)  =zley) + (yx)z = 2xy)r
II) (xy)xr — x(yx) is in N, the set of nilpotent elements of A
over any field F' whose characteristic is not two,

Recall that a finite dimensional, power-associative algebra A with
identity 1 over a field F' is called a nodal algebra if every « in A is
of the form » = a1l + » with « in F and % nilpotent, and if the set
N of nilpotent elements of A does not form a subalgebra of A. Fol-
lowing the convention laid down in [5] we call any ring satisfying
(I) a nearly commutative ring.

In a recent paper [4] one of the authors has established the
results given here if the field F has characteristic zero. In that
paper the theorem of Albert [1] that there do not exist commutative,
power-associative nodal algebras over fields of characteristic zero was
used extensively. Recently, Oehmke [3] proved the same result if
the field has characteristic P = 2. This result of Oehmke’s will be
used throughout this paper.

The known class of nodal algebras over fields of characteristic P
are the truncated polynomial algebras of Kokoris [2] which are flexi-
ble. Our results show that if nearly commutative nodal algebras
exist over fields of characteristic P they will not fall into the class
of Kokoris algebras. In [5] one of the authors has shown that there
do not exist nearly commutative nodal algebras over fields of charac-
teristic zero.

Let A be a nearly commutative nodal algebra over a field F
whose characteristic is P+ 2. Then A* is a commutative, power-
associative algebra over F. Therefore by [3] N* is a subalgebra of
A*. In particular, N is a subspace of A. The nilindex of A is de-
fined to be the least positive integer %k such that n* = 0 for every n
in N.

LEMMA 1. There do not exist any nearly commutative nodal al-
gebras whose nilindex is two over any field of characteristic P # 2.

Proof. Let A be such an algebra. Then since 2* = 0 for every
z in N and N is a subspace of A we may linearize to get zy = —yx
for all ,v in N. Let zy =al +n, yr = —al — n. It suffices to
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