THE ABEL SUMMABILITY OF CONJUGATE MULTIPLE FOURIER-STIELTJES INTEGRALS

S. P. PHILIPP, V. L. SHAPIRO AND W. H. SILLS

Let $K(x) = \Omega(x/|x|)|x|^{-k}$ where $\Omega(\xi), |\xi| = 1$, is a real valued function which is in Lip α , $0 < \alpha < 1$, on the unit (k-1)-sphere S in k-dimensional Euclidean space, $E_k, k \ge 2$ with the additional property that $\int_S \Omega(\xi) d\sigma(\xi) = 0$ where σ is the natural surface measure for S. (K(x) is usually called a Calderón-Zygmund kernel in Lip α .) Let μ be a Borel measure of finite total variation on E_k and set $\hat{\mu}(y) = (2\pi)^{-k} \int_{E_k} e^{-i(y,w)} d\mu(w)$. Also designate the principal-valued Fourier transform of K by $\hat{K}(y)$ and the principal-valued convolution of K with μ by $\hat{\mu}(x)$. Define $I_R(x) = (2\pi)^k \int_{E_k} e^{-i(y/R} \hat{\kappa}(y) \hat{\mu}(y) e^{i(y,x)} dy$. Then if k is an even integer or if k = 3, the following result is established: $\lim_{R \to \infty} I_R(x) = \hat{\mu}(x)$ almost everywhere.

In [5] V. L. Shapiro proved that the conjugate Fourier-Stieltjes integral of a finite Borel measure μ in the plane E_2 , taken with respect to a Calderón-Zygmund kernel K(x) in Lip α , $1/2 < \alpha < 1$, is almost everywhere Abel summable to the principal-valued convolution $K*\mu$. The purpose of this paper is to extend this result to E_3 and to even-dimensional E_k for K(x) in Lip α , $0 < \alpha < 1$. The first author will obtain the corresponding result for the odd-dimensional cases $k = 2s + 1, s \ge 2$, in a paper to appear, by the use of special functions. Also, the results of the present paper should be compared with Theorem 2 of [6, p. 44].

2. Definitions and notation. For $x = (x_1, \dots, x_k)$ and $y = (y_1, \dots, y_k)$ put $(x, y) = x_1y_1 + \dots + x_ky_k$, $|x| = (x, x)^{1/2}$ and $B(x, t) = \{y: |x - y| < t\}$. We will work with a fixed Calderón-Zygmund kernel $K(x) = \Omega(x/|x|)/|x|^k$ where $\Omega(\xi)$, $|\xi| = 1$, is a real-valued function defined on the unit (k - 1)-dimensional sphere S in Euclidean space E_k , $k \ge 2$, and $\int_{s} \Omega(\xi) d\sigma(\xi) = 0$, where σ is the natural surface measure for S [2, Chapter 11]. We define K(x) to be in Lip α if $|\Omega(\xi) - \Omega(\eta)| = 0(|\xi - \eta|^{\alpha})$ for some $\alpha, 0 < \alpha < 1$. The Fourier transform of a Borel measure μ in E_k of finite total variation is denoted as usual by

(1)
$$\hat{\mu}(y) = (2\pi)^{-k} \int_{E_k} e^{-i(y,w)} d\mu(w)$$

and by the principal-valued convolution $\tilde{\mu}(x)$ we mean