ON THE NUMBER OF NON-ALMOST ISOMORPHIC MODELS OF T IN A POWER

Saharon Shelah

Let T be a first order theory. Two models are almost isomorphic if they are elementarily equivalent in the language $L_{\infty, \omega}$. We investigate the number of non almost-isomorphic models of T of power λ as a function of $\lambda, I(T, \lambda)$. We prove $\mu>\lambda \geqq|T|, I(T, \lambda) \leqq \lambda$ implies $I(T, \mu) \leqq I(T, \lambda)$. In fact, we generalize the downward Skolem-Lowenheim theorem for infinitary languages. Th. (1, 4, 5).

Let L be a set of predicates with finite number of places and sufficient number of variables. (We assume there are no function symbols in L for simplicity only.) $|L|$ will denote the number of predicates in L plus \boldsymbol{K}_{0}. Models will be denoted by M, N. The set of elements of M will be $|M|$, the cardinality of a set A by $|A|$ and so the cardinality of M by $\|M\|$. Unless specified otherwise, every model is an L-model. Cardinals will be denoted by $\lambda, \mu, \kappa, \chi$ ordinals i, j, α, β. T will denote a theory, i.e., set of sentences. We define $\mu^{(\lambda)}=\sum_{k<\lambda} \mu^{k}$. For cardinals λ, μ we define the language $L(\lambda, \mu)$ i.e., a set of formulas. This set is defined as the well known first-order language where we adjoin to its operations conjunction and disjunction on a set of $<\lambda$ formulas (i.e., $\Lambda_{i \in I} \phi_{i}$, where $|I|<\lambda$) and existential or universal quantifications over a sequence of $<\mu$ variables. $L^{*}(\lambda, \mu)$ will be defined as $L(\lambda, \mu)$ where in addition we permit quantification of the form

$$
\left.\left[\forall \bar{x}^{1}\right)\left(\exists \bar{y}^{1}\right) \cdots\left(\forall \bar{x}^{n}\right)\left(\exists \bar{y}^{n}\right) \cdots\right]_{n<\omega}
$$

if

$$
\left|\left\{x_{0}^{1}, x_{1}^{1}, \cdots, y_{0}^{1}, y_{1}^{1}, \cdots, x_{0}^{n} \cdots\right\}\right|<\mu
$$

$R L^{*}(\lambda, \mu)$ will denote the subset of $L^{*}(\lambda, \mu)$ consisting of the formulas Φ of $L^{*}(\lambda, \mu)$ such that for every subformula ϕ of Φ, if $\phi=\left[\left(\forall \bar{x}^{1}\right)\right.$ $\left.\left(\exists \bar{y}^{\prime}\right) \cdots\right] \psi$, then $\vDash \phi \leftrightarrow 7\left[\left(\exists \bar{x}^{1}\right)\left(\forall \bar{y}^{1}\right) \cdots\right] 7 \psi$. Clearly $R L^{*}(\lambda, \mu) \supset$ $L(\lambda, \mu)$. K will denote any of those languages. Satisfaction (i.e., if $\phi=\phi(\bar{x})$, and $\bar{\alpha}$ is a sequence from $|M|$, then $M \vDash \phi[\bar{\alpha}])$ is defined naturally. (See Hanf [2] and Henkin [3].) The only nontotally trivial case is

$$
\psi(\bar{z})=\left[\left(\forall \bar{x}^{0}\right)\left(\exists \bar{y}^{0}\right)\left(\forall \bar{x}^{1}\right)\left(\exists \bar{y}^{1}\right) \cdots\right] \phi\left(\bar{z}, \bar{x}^{0}, \bar{x}^{1}, \cdots, \bar{y}^{0}, \bar{y}^{1} \cdots\right) .
$$

$M \vDash \psi[\bar{a}]$ if and only if there are functions $f_{i}^{n}\left(\bar{x}^{0}, \cdots, \bar{x}^{n}\right)$ such that for every sequence $\bar{a}^{0}, \bar{a}^{1}, \cdots$ from $M, M \vDash \phi\left[\bar{\alpha}, \bar{a}^{0}, \bar{a}^{1}, \cdots, \bar{b}^{0}, \bar{b}^{1}, \cdots\right]$ where $\bar{b}^{n}=\left\langle\cdots, f_{i}^{n}\left(\bar{a}^{0}, \bar{a}^{1}, \cdots, \bar{a}^{n}\right), \cdots\right\rangle$. For a sentence $\psi, \vDash \psi$ if for

