DIFFERENTIAL SIMPLICITY AND COMPLETE INTEGRAL CLOSURE

Yves Lequain

Abstract

Let R be an integral domain containing the rational numbers, and let R^{\prime} denote the complete integral closure of R. It is shown that if R is differentiably simple, then R need not be equal to R^{\prime}, even when R is Noetherian, and then the relationship between R and R^{\prime} is studied.

Let \mathscr{D} be any set of derivations of R. Seidenberg has shown that the conductor $C=\left\{x \in R \mid x R^{\prime} \subset R\right\}$ is a \mathscr{D}-ideal of R, so that when R is \mathscr{D}-simple and $C \neq 0$, then $R=R^{\prime}$. We investigate here the situation when $C=0$.

The first observation that one must make is that it is no longer true that $R=R^{\prime}$ when R is differentiably simple, even when R is Noetherian. We show this in Example 2.2 where we construct a 1 dimensional local domain containing the rational numbers which is differentiably simple but not integrally closed. This counterexamples a conjecture of Posner [4, p. 1421] and also answers affirmatively a question of Vasconcelos [6, p. 230].

Thus, it is not a redundant task to study the relationship between a differentiably simple ring R and its complete integral closure. An important tool in this study is the technique of § 3 which associates to any prime ideal P of R containing no D-ideal a rank- 1 , discrete valuation ring centered on P; by means of this, we show in Theorem 3.2 that over such a prime ideal P of R there lies a unique prime ideal of R^{\prime}. When R is a Noetherian \mathscr{D}-simple ring with $\left\{P_{\alpha}\right\}_{\alpha \in A}$ as set of minimal prime ideals, Theorem 3.3 asserts that $R^{\prime}=\bigcap_{\alpha \in A}\left\{R_{\alpha} \mid R_{\alpha}\right.$ is the valuation ring associated with the minimal prime ideal $\left.P_{\alpha}\right\}$; Corollary 3.5 asserts that R^{\prime} is the largest \mathscr{D}-simple overring of R having a prime ideal lying over every minimal prime ideal of R.

1. Preliminaries. Our notation and terminology adhere to that of Zariski-Samuel [7] and [8]. Throughout the paper we use R to denote a commutative ring with $1, K$ to denote the total quotient ring of R, and A to denote an ideal of $R ; A$ is proper if $A \neq R$. A derivation D of R is a map of R into R such that

$$
D(a+b)=D(a)+D(b) \quad \text { and } \quad D(a b)=a D(b)+b D(a)
$$

for all $a, b \in R$.
Such a derivation can be uniquely extended to K, and we shall

