B-SETS AND PLANAR MAPS

Sherman K. Stein

In this paper we examine the relation between B-sets, which are a purely set-theoretic concept, and various concepts associated with planar maps, for instance, four-colorings, five-colorings, Hamiltonian circuits, and Petersen's theorem. Moreover, the introduction of the notion of a B-set into graph theory enables us to ask questions which may be more tractable than the four-color conjecture and shed light on it.

1. Introduction and definitions. Let F be a family of sets. A set that meets every member of F and yet contains none of the members of F is called a B-set for F. Observe that if B is a B set for F, then so is its complement, $\left(\mathbf{U}_{E \in F} E\right)-B$. In fact, F has a E-set if and only if $\bigcup_{E \in F} E$ can be partitioned into two sets, A and B, such that neither A nor B contains a member of F. Observe that if F has a B-set, and if $G \cong F$, then G has a B-set. Also, if $G \cong F$, and every member of F contains some member of G, and if G has a B-set, then F also has a B-set. (The notion of B-set goes back to Bernstein, who used it in 1908 to deal with a topological question.)

We shall be concerned with maps covering the surface of the sphere, S^{2}. For the most part, we will assume that these maps are 3 -regular, that is, each vertex has degree three. Each region of the map will be a topological cell. Two regions are adjacent if they share at least one edge.

A sequence of distinct regions $R_{1}, R_{2}, \cdots, R_{n+1}, n \geqq 1$ such that R_{i} is adjacent to $R_{i+1}, 1 \leqq i \leqq n$ is a path of regions. If we have $R_{n+1}=R_{1}$, and $R_{1}, R_{2}, \cdots R_{n}$ are still distinct, we call the path a region-cycle of length n (or n-region-cycle). A region-cycle consisting simply of the regions around a vertex we call a basic cycle. In a 3-regular map the basic cycles have length three.

If the union of any two regions in a map is simply connected, then the regions bordering any given region form a region-cycle, which we call a face cycle. Its length is just the number of edges of the surrounded region.

We shall not be interested in region-cycles of length two, unless their union is not simply connected. A region-cycle is odd if its length is odd; otherwise, it is even.
2. B-sets, four-coloring, and Hamiltonian Circuits. It is well known that the vertices of a graph can be colored in four colors if and only if the set of vertices can be partitioned into two sets such

