SOLVABLE AND SUPERSOLVABLE GROUPS IN WHICH EVERY ELEMENT IS CONJUGATE TO ITS INVERSE

J. L. Berggren

Abstract

Let \subseteq be the class of finite groups in which every element is conjugate to its inverse. In the first section of this paper we investigate solvable groups in S: in particular we show that if $G \in \subseteq$ and G is solvable then the Carter subgroup of G is a Sylow 2 -subgroup and we show that any finite solvable group may be embedded in a solvable group in \mathbb{S}. In the second section the main theorem reduces the study of supersolvable groups in \mathfrak{S} to the study of groups in \mathfrak{S} whose orders have the form $2^{\alpha} p^{\beta}, p$ an odd prime.

Notation. The notation here will be as in [1] with the addition of the notation $G=X Y$ to mean G is a split extension of Y by X. Also, $F(G)$ will denote the Fitting subgroup of G and $\Phi(G)$ the Frattini subgroup of G. We will denote the maximal normal subgroup of G of odd order by $O_{2^{\prime}}(G)$. Further, $\operatorname{Hol}(G)$ will denote the split extension of G by its automorphism group.

If K and T are subgroups of G we will call K a T-group if $T \leqq N_{G}(K)$ and we say K is a T-indecomposable T-group if $K=$ $K_{1} \times K_{2}$, where K_{1} and K_{2} are T-groups, implies $K_{1}=\langle 1\rangle$ or $K_{2}=\langle 1\rangle$.

1. Burnside [2] proved that if P is a Sylow p-subgroup of the finite group G and if X and Y are P-invariant subsets of P which are not conjugate in $N_{G}(P)$ then they are not conjugate in G. Using Burnside's method one may prove a similar fact about the Carter subgroups. The proof is easy and we omit it.

Lemma 1.1. Let C be a Carter subgroup of the solvable group G and let A and B be subsets of C, both normal in C. If $A \neq B$ then A and B are not conjugate in G.

Theorem 1.1. If G is a solvable group in \mathfrak{S} then a Carter subgroup of G is a Sylow 2-subyroup of G.

Proof. Let C be a Carter subgroup of G. If C has a nonidentity element of odd order then C has a nonidentity central element g of odd order, since C is nilpotent. Then with $A=\{g\}$ and $B=\left\{g^{-1}\right\}$ the hypotheses of Lemma 1.1 are satisfied and, since $A \neq B, g$ and g^{-1} are not conjugate in G, contradicting our supposition that $G \in \mathfrak{S}$.

