THE FUNCTIONS OF BOUNDED INDEX AS A SUBSPACE OF A SPACE OF ENTIRE FUNCTIONS

KEITH A. EKBLAW

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ be entire functions. Define $d(f, g) = \sup \{|a_0 - b_0|, (|a_n - b_n|)^{1/n} n = 1, 2, \cdots\}$. It is the purpose of this note to show that, in the topology generated by d, the entire functions of bounded index, B, are of the first category.

Further, for Γ , the corresponding space of all entire functions, and $B_n = \{f \in B | \text{the index of } f \text{ is } \leq n\}$ is shown that $B - B_n$ is dense in Γ for any nonnegative integer n. It is also shown that $\Gamma - B$ is dense in Γ . (For definition and main results see [2], [3].)

LEMMA 1. For any $f \in \Gamma$, $N \ge 0$, and $\varepsilon > 0$ there exists a $\delta > 0$ such that if $g \in \Gamma$ and $d(f, g) < \delta$ then $d(f^{(k)}, g^{(k)}) < \varepsilon$ for $k = 0, 1, \dots, N$.

Proof. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \Gamma$, $N \ge 0$, and $\varepsilon > 0$ be given. Let

It is straightforward to verify that if $g(z) = \sum_{n=0}^{\infty} b_n z^n \in \Gamma$ and $d(f, g) < \frac{\varepsilon}{T + \varepsilon}$ then

$$egin{aligned} &d(f^{\scriptscriptstyle (k)},\,g^{\scriptscriptstyle (k)})\ &= \mathrm{Sup}\Big\{k!\,|\,a_k-b_k\,|\,, \Big(rac{n+k)!}{n!}\,|\,a_{n+k}-b_{n+k}\,|\,\Big)^{\scriptscriptstyle 1/n}\,n=1,\,2,\,\cdots\Big\}\ &< I\cdotrac{arepsilon}{T+arepsilon}$$

REMARK. If $f \in \Gamma - B$ then f is said to be of unbounded index and the index of $f = \infty$.

LEMMA 2. If n is a nonnegative integer and f is of index > n (bounded or unbounded) then there exists a $\delta > 0$ such that if $g \in \Gamma$ and $d(f, g) < \delta$ then $g \in \Gamma - B_n$.

Proof. Let n be given such that $n \ge 0$. Let $f \in \Gamma$ be given such that the index of f (bounded or unbounded) is > n. Let k be