A FACTORIZATION THEOREM FOR ANALYTIC FUNCTIONS OPERATING IN A BANACH ALGEBRA

PHILIP C. CURTIS, JR. AND HENRIK STETKAER

Cohen's factorization-theorem asserts that if the Banach algebra \mathfrak{A} has a left approximate identity, then each $y \in \mathfrak{A}$ may be written y = xz, $x, z \in \mathfrak{A}$. The vector x may be chosen to be bounded by some fixed constant and z may be chosen arbitrarily close to y. In this setting the theorem below asserts that if F is a holomorphic function defined on a sufficiently large disc about $\zeta = 1$, and satisfying F(1) = 1, then each $y \in \mathfrak{A}$ may be written y = F(x)z, where $x, z \in \mathfrak{A}$. Again x may be chosen to be bounded by some fixed constant and z may be chosen close to y.

We state and prove our result using the terminology of [2]. The proof is an elaboration of the proof of Theorem 2.2 of [2]. In what follows X is a complex Banach space, $\mathscr{C} = \{E_{\alpha}\}$ is a uniformly bounded subset of B(X) which we may assume to be directed and which satisfies $\lim_{\alpha} E_{\alpha} E = E$ for each $E \in \mathscr{C}$. Convergence is in the norm topology of B(X). Let

$$Y = \{x \in X: \lim_{\alpha} E_{\alpha} x = x\},\$$

and let \mathfrak{A} be the closed subalgebra of B(X) generated by \mathscr{C} .

For further extensions of Cohen's theorem we refer the reader to Chapter 8 of [3].

THEOREM. Let F be a holomorphic complex-valued function with F(1) = 1, defined on a neighbourhood of $\{z \in C \mid |z - 1| \leq M\}$, M > 1, where $||E - I|| \leq M$ for all $E \in \mathscr{C}$.

Then to every $y \in Y$ and $\delta > 0$ there exist $z \in Y$ and $U \in \mathfrak{A}$ such that

$$y = F(U)z$$
 and $||y - z|| < \delta$.

If furthermore F has no zeros in the open interval]0, 1[, then U may for some $a \in [0, 1]$ be written in the form

$$U = \sum\limits_{\scriptscriptstyle 1}^{\infty} a (1 - a)^{k - 1} \, E_k$$
 ,

where $E_k \in \mathscr{C}$ for $k = 1, 2, \cdots$.