APOSYNDETIC PROPERTIES OF UNICOHERENT CONTINUA

DONALD E. BENNETT

In the first part of this paper the structure of *n*-aposyndetic continua is studied. In particular, those continua which are *n*-aposyndetic but fail to be (n + 1)-aposyndetic are investigated. Unicoherence is shown to be a sufficient condition for an *n*-aposyndetic continuum to be (n + 1)-aposyndetic. In the final portion of the paper a stronger form of unicoherence is defined. As a point-wise property, aposyndesis and connected im kleinen are shown to be equivalent in continua with this property.

Throughout this paper a continuum is a compact connected metric space and M will denote a continuum. If N is a subcontinuum of M, the interior of N in M will be denoted by int N. Suppose $p \in M$ and F is a closed subset of M such that $p \notin F$. M is a posyndetic at pwith respect to F if there is a subcontinuum N of M such that $p \in \text{int } N \subset N \subset M - F$. Let n be a positive integer. If M is a posyndetic at p with respect to each subset of M consisting of n points, then M is n-aposyndetic at p. M is n-aposyndetic if it is n-aposyndetic at each point. By convention if M is 1-aposyndetic then M is said to be aposyndetic.

For other terms not defined herein, see [3], [4] and [6].

LEMMA 1. Suppose M is n-aposyndetic, $p \in M, F$ is a subset of $M - \{p\}$ consisting of n + 1 points, and M is not aposyndetic at p with respect to F. If F_1 and F_2 are disjoint nonempty subsets of F such that $F = F_1 \cup F_2$, there exist subcontinua H and K such that $F_1 \subset H - K$, $F_2 \subset K - H, p \in int (H \cap K)$, and $M = H \cup K$.

Proof. Suppose F_1 and F_2 are disjoint nonempty subsets of F and $F = F_1 \cup F_2$. For each $x \in F_1$ there is a subcontinuum N_x in $M - (F - \{x\})$ such that $p \in \operatorname{int} N_x$. Clearly $x \in N_x$. Let $A = \bigcup \{N_x \colon x \in F_1\}$. For each $x \in F_1$ there is a subcontinuum L_x such that $x \in \operatorname{int} L_x$ and $L_x \cap F_2 = \emptyset$. Let $A_1 = A \cup (\cup \{L_x \colon x \in F_1\})$. Then A_1 is a continuum, $\{p\} \cup F_1 \subset \operatorname{int} A_1$, and $A_1 \cap F_2 = \emptyset$.

Now by interchanging the roles of F_1 and F_2 we obtain a continuum A_2 such that $\{p\} \cup F_2 \subset \operatorname{int} A_2$ and $A_2 \cap F_1 = \emptyset$.

Let $V = (M - A_1) \cap \operatorname{int} A_2$ and $U = (M - A_2) \cap \operatorname{int} A_1$. Let H be the component of M - V which contains A_1 and let K be the component of M - U which contains A_2 . Then $F_1 \subset H - K$, $F_2 \subset K - H$,