APOSYNDETIC PROPERTIES OF UNICOHERENT CONTINUA

Donald E. Bennett

Abstract

In the first part of this paper the structure of n-aposyndetic continua is studied. In particular, those continua which are n-aposyndetic but fail to be $(n+1)$-aposyndetic are investigated. Unicoherence is shown to be a sufficient condition for an n-aposyndetic continuum to be ($n+1$)-aposyndetic. In the final portion of the paper a stronger form of unicoherence is defined. As a point-wise property, aposyndesis and connected im kleinen are shown to be equivalent in continua with this property.

Throughout this paper a continuum is a compact connected metric space and M will denote a continuum. If N is a subcontinuum of M, the interior of N in M will be denoted by int N. Suppose $p \in M$ and F is a closed subset of M such that $p \notin F . M$ is aposyndetic at p with respect to F if there is a subcontinuum N of M such that $p \in \operatorname{int} N \subset N \subset M-F$. Let n be a positive integer. If M is aposyndetic at p with respect to each subset of M consisting of n points, then M is n-aposyndetic at $p . \quad M$ is n-aposyndetic if it is n-aposyndetic at each point. By convention if M is 1-aposyndetic then M is said to be aposyndetic.

For other terms not defined herein, see [3], [4] and [6].
Lemma 1. Suppose M is n-aposyndetic, $p \in M, F$ is a subset of $M-\{p\}$ consisting of $n+1$ points, and M is not aposyndetic at p with respect to F. If F_{1} and F_{2} are disjoint nonempty subsets of F such that $F=F_{1} \cup F_{2}$, there exist subcontinua H and K such that $F_{1} \subset H-K$, $F_{2} \subset K-H, p \in \operatorname{int}(H \cap K)$, and $M=H \cup K$.

Proof. Suppose F_{1} and F_{2} are disjoint nonempty subsets of F and $F=F_{1} \cup F_{2}$. For each $x \in F_{1}$ there is a subcontinuum N_{x} in $M-$ $(F-\{x\})$ such that $p \in \operatorname{int} N_{x}$. Clearly $x \in N_{x}$. Let $A=\bigcup\left\{N_{x}: x \in F_{1}\right\}$. For each $x \in F_{1}$ there is a subcontinuum L_{x} such that $x \in \operatorname{int} L_{x}$ and $L_{x} \cap F_{2}=\varnothing$. Let $A_{1}=A \cup\left(\cup\left\{L_{x}: x \in F_{1}\right\}\right)$. Then A_{1} is a continuum, $\{p\} \cup F_{1} \subset$ int A_{1}, and $A_{1} \cap F_{2}=\varnothing$.

Now by interchanging the roles of F_{1} and F_{2} we obtain a continuum A_{2} such that $\{p\} \cup F_{2} \subset$ int A_{2} and $A_{2} \cap F_{1}=\varnothing$.

Let $V=\left(M-A_{1}\right) \cap \operatorname{int} A_{2}$ and $U=\left(M-A_{2}\right) \cap \operatorname{int} A_{1}$. Let H be the component of $M-V$ which contains A_{1} and let K be the component of $M-U$ which contains A_{2}. Then $F_{1} \subset H-K, F_{2} \subset K-H$,

