ON THE DENSITY OF (k, r) INTEGERS

Y. K. Feng and M. V. Subbarao

Let k and r be integers such that $0<r<k$. We call a positive integer $n, a(k, r)$-integer if it is of the form $n=a^{K} b$, where a and b are natural numbers and b is r-free. Clearly, $a(\infty, r)$-integer is a r-free integer. Let $Q_{k, r}$ denote the set of (k, r)-integers and let $\delta\left(Q_{k, r}\right), D\left(Q_{k, r}\right)$ respectively denote the asymptotic and Schnirelmann densities of the set $Q_{k, r .}$. In this paper, we prove that $\delta\left(Q_{k, r}\right)>D\left(Q_{k, r}\right) \geqq$ $\zeta(k)\left(1-\sum_{p} p^{-r}\right)-1 / k(1-(1 / k))^{k-1}$, and deduce the known results for r-free integers.

1. Introduction and Notation. In some recent papers, ([4, 5]) we introduced a generalized class of r-free integers, which we called the (k, r)-integers. For given integers k, r with $0<r<k, a(k, r)$ integer is one whose k-free part is also r-free. In the limiting case when $k=\infty$, we get the r-free integers. It is clear that $a(k, r)$ integer is an integer of the form $a^{k} b$, where a and b are natural numbers and b is r-free. Let $Q_{k . r}, Q_{r}$ denote the set of all (k, r) integers and the set of all r-free integers respectively. Also let $Q_{k, r}(x)$ denote the number of (k, r)-integers not exceeding x, with corresponding meaning for $Q_{r}(x)$. We write $\delta\left(Q_{k, r}\right)$ for the asymptotic density of the (k, r)-integers, that is,

$$
\delta\left(Q_{k, r}\right)=\lim _{x \rightarrow \infty} \frac{Q_{k r}(x)}{x},
$$

(provided this limit exists), and $D\left(Q_{k, r}\right)$ for their Schnirelmann density given by

$$
D\left(Q_{k, r}\right)=\inf _{n} \frac{Q_{k r}(n)}{n} .
$$

We define $\delta\left(Q_{r}\right)$ and $D\left(Q_{r}\right)$ analogously. Let $\psi(n)$ be the characteristic function of $Q_{k, r}$ and $\lambda(n)$ be defined by

$$
\sum_{d \mid n} \lambda(d)=\psi(n) .
$$

It is easily proved (see [3]) that the function $\psi(n)$ and $\lambda(n)$ are multiplicative and for any prime p

$$
\lambda\left(p^{a}\right)=\left\{\begin{array}{rl}
1 a \equiv 0(\bmod k), \\
-1 & a \equiv r(\bmod k) \\
0 & \text { otherwise }
\end{array}\right.
$$

Further,

