UNIQUELY REPRESENTABLE SEMIGROUPS ON THE TWO-CELL

J. T. Borrego, H. Cohen, and E. E. DeVun

Abstract

A semigroup S is said to be uniquely representable in terms of two subsets X and Y of S if $X \cdot Y=Y \cdot X=S, x_{1} y_{1}=$ $x_{2} y_{2}$ is a nonzero element of S implies $x_{1}=x_{2}$ and $y_{1}=y_{2}$, and $y_{1} x_{1}=y_{2} x_{2}$ is a nonzero element of S implies $y_{1}=y_{2}$ and $x_{1}=x_{2}$ for $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$. A semigroup S is said to be uniquely divisible if for each $s \in S$ and every positive integer n there exists a unique $z \in S$ such that $z^{n}=s$. Theorem. If S is a uniquely divisible semigroup on the two-cell with the set of idempotents of S being a zero for S and an identity for S, then S is uniquely representable in terms of X and Y where X and Y are iseomorphic copies of the usual unit interval and the boundary of S equals X union Y. Corollary. If S is a uniquely divisible semigroup on the two-cell and if S has only two idempotents, a zero and an identity, then the nonzero elements of S form a cancellative semigroup.

A semigroup S is said to be uniquely representable in terms of two subsets X and Y of S if $X \cdot Y=Y \cdot X=S, x_{1} y_{1}=x_{2} y_{2}$ is a nonzero element of S implies $x_{1}=x_{2}$ and $y_{1}=y_{2}$, and $y_{1} x_{1}=y_{2} x_{2}$ is a nonzero element of S implies $y_{1}=y_{2}$ and $x_{1}=x_{2}$ for $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$. A semigroup S is said to be uniquely divisible if for every $s \in S$ and every positive integer n there exists a unique $z \in S$ such that $z^{n}=s$.

The primary purpose of this paper is to show that if S is a uniquely divisible semigroup on two-cell with the set of idempotents of S being a zero for S and an identity for S, then S is uniquely representable in terms of X and Y where X and Y are iseomorphic copies of the usual unit interval and the boundary of S equals X union Y. As a corollary to this theorem we shall prove a conjecture of D. R. Brown, that if S is a uniquely divisible semigroup on the two-cell and if S has only two idempotents, a zero and an identity, then the nonzero elements of S form a cancellative subsemigroup of S.

Notation. Throughout S will be a uniquely divisible semigroup on the two-cell with $E(S)$ (the set of idempotents of S) $=\{0,1\}$ where 0 is the zero for S and 1 is the identity for S. It is well known that the boundary of S is the union of two usual threads X and Y with $X \cap Y=\{0,1\}$ and $S=X \cdot Y=Y \cdot X$. Intervals containing x will represent segments of X and intervals with y shall stand for segments of Y. For a positive integer $n, \mathrm{~s}^{1 / n}$ will denote the unique nth root of s in S.

