GLOBALIZATION THEOREMS FOR LOCALLY FINITELY GENERATED MODULES

ROGER WIEGAND

Each commutative ring has a coreflection \hat{R} in the category of commutative regular rings. We use the basic properties of \hat{R} to obtain globalization theorems for finite generation and for projectivity of *R*-modules.

1. Preliminaries. A detailed description of the ring \hat{R} may be found in [8]. Here we list without proofs the facts that will be We assume that everything is unitary, but not necessarily needed. However, R will always denote an arbitrary comcommutative. mutative ring. All unspecified tensor products are taken over R. For each $a \in R$ and each $P \in \text{Spec}(R)$, let a(P) be the image of a under the obvious map $R \to R_P/PR_P$. Then \hat{R} is the subring $\prod_P R_P/PR_P$ consisting of finite sums of elements [a, b], where [a, b] is the element whose P^{th} coordinate is 0 if $b \in P$ and a(P)/b(P) if $b \notin P$. There is a natural homomorphism $\varphi: R \to \hat{R}$ taking a to [a, 1]. The ring \hat{R} is regular (in the sense of von Neumann). The statement that \hat{R} is a coreflection means simply that each homomorphism from R into a commutative regular ring factors uniquely through φ .

The map Spec (φ) : Spec $(\hat{R}) \to$ Spec (R) is one-to-one and onto; for each $P \in$ Spec (R) we let \hat{P} be the corresponding prime (= maximal) ideal of \hat{R} .

If A is an R-module and $P \in \text{Spec}(R)$, then A_P/PA_P and $(A \otimes \hat{R})_{\hat{P}}$ are vector spaces over R_P/PR_P and $\hat{R}_{\hat{P}}$ respectively. The map $\varphi: R \to \hat{R}$ induces an isomorphism $R_P/PR_P \cong \hat{R}_{\hat{P}}$, and, under the identification, A_P/PA_P and $(A \otimes \hat{R})_{\hat{P}}$ are isomorphic vector spaces.

2. Globalization theorems.

LEMMA. If $A\otimes \widehat{R}=0$ and $A_{\scriptscriptstyle R}$ is locally finitely generated then A=0.

Proof. For each prime P, $A_P/PA_P = 0$, by the last paragraph of §1. Since A_P is finitely generated over R_P , Nakayama's lemma implies that $A_P = 0$ for each $P \in \text{Spec}(R)$. Therefore A = 0.

THEOREM 1. Assume $(A \otimes \hat{R})$ is finitely generated over \hat{R} , and that A_R is either locally free or locally finitely generated. Then A_R is finitely generated.