ON SOLVABLE O*-GROUPS

D. P. MINASSIAN

The purpose of this paper is to prove the existence of O^* -groups of arbitrary solvable length, as well as of non-solvable O^* -groups.

By a partial order for a group G we mean a reflexive, antisymmetric and transitive relation, \leq , on G such that if g and h are elements of G and $g \leq h$, then $xgy \leq xhy$ for all x and y in G. If also any two elements g and h of G are comparable (i.e., either $g \leq h$ or $h \leq g$), then the partial order for G is called a *total* (or *full*, or *linear*) order. The group G is an O^{*}-group if any partial order for G is included in some total order for G.

A group G is solvable of length n, where n is a positive integer, if the derived chain of G reaches the unit subgroup, E, in n steps:

$$G = G^{\scriptscriptstyle 1} \supseteq G^{\scriptscriptstyle 2} \supseteq \cdots \supseteq G^{\scriptscriptstyle n} \supseteq G^{\scriptscriptstyle n+1} = E,$$

where G^{i+1} is the derived group of G^i (denoted below by $G^{i+1} = [G^i, G^i]$).

It has been shown that non-abelian free groups are not O^{*}-groups ([1], [2], [3], [4], [6]). Further, Kargapolov [5] and Kargapolov, Kokorin and Kopytov [6] have produced solvable groups which are not O^{*}-groups even though they admit a full order: these are the free r-step solvable groups on k generators for $r \ge 3$ and $k \ge 2$. In view of these results one may ask if there exist solvable O^{*}-groups of arbitrary length, and nonsolvable O^{*}-groups. The answers are affirmative.

THEOREM. For every positive integer m there exists an O^{*}-group G that is solvable of length m.

Proof. Let F be the free group on k generators for some fixed $k \ge 2$. Let F_i be the *i*th term in the lower central series for F, where $F_1 = F$, and let F^i be the *i*th derived group for F, where $F^1 = F$. Consider F/F_i , the free nilpotent group of class *i* with k generators. By varying *i* we shall obtain the desired groups G of the theorem.

We first claim that F/F_i is torsion-free for every positive integer *i*. If not, then for some *i* there exists an element $a \in F$ and a positive integer *p* such that $a \notin F_i$, but $a^p \in F_i$. Now $a \in F_h - F_{h+1}$ for some positive integer $h \leq i-1$. Thus $a^p \in F_i \subseteq F_{h+1}$, and so F_h/F_{h+1} is not torsion-free. On the other hand, Witt's theorem (see, e.g., [8, p. 41]) states that F_h/F_{h+1} is a free abelian group (and hence torsion-