GROUP RINGS SATISFYING A POLYNOMIAL IDENTITY II

D. S. PASSMAN

In an earlier paper we obtained necessary and sufficient conditions for the group ring K[G] to satisfy a polynomial identity. In this paper we obtain similar conditions for a twisted group ring $K^t[G]$ to satisfy a polynomial identity. We also consider the possibility of K[G] having a polynomial part.

1. Twisted group rings. Let K be a field and let G be a (not necessarily finite) group. We let $K^t[G]$ denote a twisted group ring of G over K. That is $K^t[G]$ is an associative K-algebra with basis $\{\bar{x} \mid x \in G\}$ and with multiplication defined by

$$\overline{x}\overline{y} = \gamma(x, y)\overline{xy}$$
, $\gamma(x, y) \in K - \{0\}$.

The associativity condition is equivalent to $\overline{x}(\overline{y}\overline{z}) = (\overline{x}\overline{y})\overline{z}$ for all $x, y, z \in G$ and this is equivalent to

$$\gamma(x, yz)\gamma(y, z) = \gamma(x, y)\gamma(xy, z)$$
.

We call the function $\gamma: G \times G \to K - \{0\}$ the factor system of $K^t[G]$. If $\gamma(x, y) = 1$ for all $x, y \in G$ then $K^t[G]$ is in fact the ordinary group ring K[G]. In this section we offer necessary and sufficient conditions for $K^t[G]$ to satisfy a polynomial identity. The proof follows the one for K[G] given in [3] and we only indicate the suitable modifications needed. The following is Lemma 1.1 of [2].

LEMMA 1.1. If
$$x \in G$$
, then in $K^{t}[G]$ we have
(i) $1 = \gamma(1, 1)^{-1} \overline{1}$
(ii) $\overline{x}^{-1} = \gamma(x, x^{-1})^{-1} \gamma(1, 1)^{-1} \overline{x^{-1}}$
 $= \gamma(x^{-1}, x)^{-1} \gamma(1, 1)^{-1} \overline{x^{-1}}$.

PROPOSITION 1.2. Suppose $K^t[G]$ satisfies a polynomial identity of degree n and set $k = (n !)^2$. Then G has a characteristic subgroup G_0 such that $[G: G_0] \leq (k + 1)!$ and such that for all $x \in G_0$

$$[G: C_G(x)] \leq k^{4^{(k+1)!}}.$$

Proof. This is the twisted analog of Corollary 3.5 of [3]. We consider § 3 of [3] and observe that each of the prerequisite results for that corollary also has a twisted analog.