TWO REMARKS ON ELEMENTARY EMBEDDINGS OF THE UNIVERSE

THOMAS J. JECH

The paper contains the following two observations: 1. The existence of the least submodel which admits a given elementary embedding j of the universe. 2. A necessary and sufficient condition on a complete Boolean algebra B that the Cohen extension V^B admits j.

A function j defined on the universe V is an elementary embedding of the universe if there is a submodel M such that for any formula φ ,

(*)
$$\forall x_1, \cdots, x_n [\varphi(x_1, \cdots, x_n) \longleftrightarrow M \vDash \varphi(jx_1, \cdots, jx_n)].$$

Let j be an elementary embedding of the universe. If N is a submodel, let $j_N = j | N$ be the restriction of j to N. N admits j if

(**) $N \models j_N$ is an elementary embedding of the universe.

If B is a complete Boolean algebra, let V^{B} be the Cohen extension of V by B. V^{B} admits j if

(***) $V^{\scriptscriptstyle B} \vDash$ there exists an elementary embedding i of the universe such that $i \supseteq j$

THEOREM 1. There is a submodel L(j) which is the least submodel which admits j.¹

THEOREM 2. The Cohen extension V^{B} admits j if and only if the identity mapping on j''B can be extended to a j(V) – complete homomorphism of j(B) onto j''B.

Before giving the proof, we have a few remarks. The underlying set theory is the axiomatic theory BG of sets and classes of Bernays and Gödel [1]. The formula φ in (*) is supposed to have only set variables. However, if for any class C we let $j(C) = \bigcup_{\alpha \in On} j(C \cap V_{\alpha})$, then (*) holds also for formulas having free class variables ("normal formulas" of [1].) Incidentally, "j is an elementary embedding of the universe" is expressible in the language of BG (viz.: j is an ε -isomorphism and $\forall C_1 \forall C_2[\mathscr{F}_i(jC_1, jC_2) = j(\mathscr{F}_i(C_1, C_2))]$ where \mathscr{F}_i are the Gödel operations).

¹ This was observed independently by K. Hrbáček, giving a different proof.