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STRICTLY CYCLIC OPERATOR ALGEBRAS

ALAN LAMBERT

This paper is concerned with the structure of abelian
algebras .7 of operators on Hilbert space 52 such that
¥ x =57 for some vector  in H. It is shown that if a
transitive algebra .7~ contains such an algebra then .7~ is
dense in the weak topology on &2 (5%°). It is also shown
that when an algebra of this type is semi-simple then it is
a reflexive operator algebra. The algebras investigated have
the property that every densely defined linear trans-forma-
tion commuting with the algebra is bounded.

Let 5 be a complex Hilbert space and let & (5#) be the
algebra of all bounded linear operators on 5% The study of sub-
algebras of #(5#°) has primarily dealt with self-adjoint algebras.
The literature on non-self-adjoint subalgebras of &°(5#°) is far less
complete. This paper is concerned with a class of non-self-adjoint
subalgebras, the strictly cyclic abelian subalgebras. The first appli-
cation of these algebras will be to the theory of transitive algebras.
A subalgebra .77 of £(57) is transitive if the only closed subspace
of 57 invariant for every operator in 7~ are 5 and {0}. W. B.
Arveson showed that a knowledge of the (possibly) unbounded linear
transformations commuting with a transitive algebra 7~ can be
used to decide if .7~ is dense in the weak operator topology on & (5#)
(it is not kown if every transitive algebra of operators on an infinite
dimensional Hilbert space must be weakly dense in & (5#)).

Arveson also proved that every transitive algebra containing a
maximal abelian self-adjoint algebra is weakly dense in #(5#). E.
Nordgren, H. Radjavi, and P. Rosenthal used Arveson’s techniques to
show that if 57 is separable, then every transitive algebra of oper-
ators containing a certain type of weighted shift must be dense in
F(2#). It is shown that every transitive algebra containing a
strictly cyclic abelian algebra is weakly dense in & (5#). It has
been shown that the weakly closed algebras generated by certain
weighted shifts are strictly cyclic. This class of shifts properly con-
tains the class of shifts mentioned above. In particular, several
examples of shifts generating strictly cyclic algebras are neither com-
pact nor quasi-nilpotent.

In § 3 we develop some tests for strict cyclicity of abelian alge-
bras. In §5 we show that certain stictly cyclic abelian algebras are
unitarily equivalent to multiplication operator algebras on funetional
Hilbert spaces (Theorem 5.1), and are examples of reflexive operator
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