DEFINING RELATIONS FOR CERTAIN INTEGRALLY PARAMETERIZED CHEVALLEY GROUPS

W. P. WARDLAW

For each faithful finite dimensional irreducible representation R of a finite dimensional simple Lie algebra L over the complex field, this paper treats the integrally parameterized subgroup G_Z of the Chevalley Group G over the rational field Q. For L of type A_l , D_l , or E_l , Lie algebraic methods are used to extend a result of J. Nielson on SL(3, Z) to obtain a finite set of defining relations for G_Z . Similar relations augmented by defining relations for $G_Z(B_2)$ are shown to define G_Z when L is of type B_l , C_l , or F_4 . (The relations for $G_Z(B_2)$ are not listed here.)

Defining relations for the *n*-dimensional group of lattice transformations have been given by W. Magnus in [4]. His method easily yields relations for the group SL(n, Z) respectively PSL(n, Z) isomorphic to the universal respectively adjoint group G_z for L of type A_{n-1} . H. Klingen [2] has proven the existence of a finite set of defining relations for Sp(2n, Z), which is essentially the group G_z for L of type C_n . Hence, the defining relations in §2 extend Magnus' result to G_z of types D_i and E_i and Klingen's result to G_z of types B_i and F_4 .

It might be helpful to the reader to note that a displayed equation is referred to by a symbol in parentheses, e.g., "(3.1)" or "(B)" and a theorem, lemma, or corollary is referred to by its title and a number without parentheses, e.g., "Lemma 3.1".

2. Statement of results. Let R be a faithful finite dimensional irreducible representation of a finite dimensional simple Lie algebra L over the complex field C, and let Σ be the set of nonzero roots of L with respect to some Cartan subalgebra. L has a *Chevalley basis* $\{X_{\rho}, H_{\rho}: \rho \in \Sigma\}$ as defined in [1, p. 24, Th. 1] or [9, p. 6, Th. 1]. The L module V associated with R contains a lattice M which is invariant under the action of the Chevalley basis. If M is properly chosen and K is an arbitrary field, the automorphism $x_{\rho}(t) = \exp tR(X_{\rho})$ on $V_{\kappa} = K \bigotimes_{\mathbb{Z}} M$ can be defined for each ρ in Σ and t in K. The group G_{κ} generated by all of these automorphisms is the Chevalley group over the field K of type L corresponding to the representation R. G_{κ} is the adjoint respectively universal Chevalley group if R is the adjoint respectively universal representation of L. (See [9, pp. 42-45].)

We will be concerned with the rational Chevalley group G_{ϱ} (henceforth denoted by G) and its subgroup, the integrally parameterized Chevalley group G_z generated by the $x_{\rho}(t)$ with ρ in Σ and t in Z.