A NOTE ON TWO GENERALIZATIONS OF $Q F-3$

Charles Vinsonhaler

Abstract

If M is an R-module, then the dual of M is defined to be $\operatorname{Hom}_{R}(M, R)$. Artinian $Q F-3$ rings R have been characterized by the following two properties: (1) The class of R-modules with zero duals is closed under taking submodules. (2) The class of torsionless R-modules is closed under extension.

These properties are independent and, in the present paper, we study the two classes of rings R which satisfy each of these conditions separately.

Let R be a ring with identity. R is said to be (left) $Q F-3$ provided there is an idempotent e in R such that $R e$ is faithful and injective as a (left) R-module. The notion of $Q F-3$ rings is derived from the definition of $Q F-3$ algebras introduced by Thrall in [4].

If M is a left R-module, let $M^{*}=\operatorname{Hom}(M, R)$ denote the "dual" of M, with the usual right module structure. For left Artinian rings R, Wu, Mochizuki and Jans [5] have given the following two properties characterizing those which are $Q F-3$.
(1) If $M_{1} \subseteq M_{2}$ are R-modules, then $M_{2}^{*}=(0)$ implies $M_{1}^{*}=(0)$.
(2) The class of torsionless R-modules is closed under extension.

That is, if A and C are torsionless R-modules, and $0 \rightarrow A \rightarrow B \rightarrow$ $C \rightarrow 0$ is an exact sequence of R-modules, then B is torsionless.

In this note, rings satisfying (1) or (2) separately are studied. Those satisfying (1) are called SZD and those satisfying (2), TCE. For (left) R-modules M, the following notation is used,
$Z(M)=\{m \in M \mid E m=0$ for some essential left ideal $E \subseteq R\}$ (the singular submodule of M)
$S(M)=$ the sum of all simple submodules of M (the socle of M)
$E(M)=$ injective hull of M

SZD and TCE Rings

Proposition 1. A ring R is $S Z D$ if and only if the following are equivalent for every R-module M.
(1) $\operatorname{Hom}(M, R)=(0)$
(2) $\operatorname{Hom}(M, E(R))=(0)$

Proof. Assume R is SZD. Condition (2) implies (1) trivially. To show (1) implies (2), assume $M^{*}=(0)$ and let $f \neq 0$ in $\operatorname{Hom}(M, E(R))$. Set $L=f(M) \cap R$ and $M_{0}=f^{-1}(L)$. Then $M_{0} \neq(0)$ and $\left.f\right|_{M_{j}}: M_{0} \rightarrow R$ is nonzero, so that $M_{0}^{*} \neq(0)$. Since R is SZD, this implies $M^{*} \neq(0)$,

