SUMMABILITY AND FOURIER ANALYSIS

GEORGE BRAUER

An integration on βN , the Stone-Cech compactification of the natural numbers N, is defined such that if s is a bounded sequence and ϕ is a summation method evaluating s to σ , $\int sd \phi = \sigma$. The Fourier transform ϕ of a summation method ϕ is defined as a linear functional on a space of test functions analytic in the unit disc: if

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$$
, $|z| < 1$, then $\phi(f) = \int \hat{f}(n) d\phi$.

A functional which agrees with the Fourier transform of a regular summation method must annihilate the Hardy space H_1 . Our space of test functions is often the space M_p of functions $f = \Sigma \hat{f}(n) z^n$, analytic in the unit disc, such that

$$||f||_{M_p} = \lim \sup [(1-r) \int_0^{2\pi} |f(r^{1'p'}e^{i\theta})|^p d\theta/2\pi]^{1/p}$$

is finite for some p > 1. A functional L which is well defined on a space M_p for some $p \ge 2$ such that L(1/(1-z)) = 1 agrees with the Fourier transform of a summation method which is slightly stronger than convergence.

Let $s = \{s_n\}$ be an infinite sequence of complex numbers, that is, a continuous function on the discrete additive semigroup of natural numbers N. The sequence s has a continuous extension s^{β} to βN , the Stone-Cech compactification of N (s^{β} takes the value $\circ\circ$ if s is unbounded). Throughout the paper, the symbol βZ denotes the Stone-Cech compactification of the space Z, and the continuous extension of a function f defined on Z to βZ will be denoted by f^{β} ; for a description of the Stone-Cech compactification we refer the reader to [2, pp. 82-93]. We impose the norm

$$egin{array}{ll} |s|| &= \limsup |s_n| \ &= LUB \, |s^{s}(\gamma) \;, & \gamma \in eta N - N \end{array}$$

on the space m_0 of bounded sequences. Thus m_0 is isometric to $C(\beta N - N)$, the ring of continuous complex functions on $\beta N - N$; sequences differing by a null sequence are identified in m_0 .

Let ϕ denote a summation method-that is, a linear functional on a subspace of m_0 . We assume that the ϕ -transform of every sequence s to which ϕ is applicable is either a continuous function on N or else a continuous function on the half open unit interval I: [0, 1).