SUMMABILITY AND FOURIER ANALYSIS

George Brauer

An integration on βN, the Stone-Cech compactification of the natural numbers N, is defined such that if s is a bounded sequence and $\dot{\rho}$ is a summation method evaluating s to σ, $\int s d \dot{\phi}=\sigma$. The Fourier transform ϕ of a summation method ϕ is defined as a linear functional on a space of test functions analytic in the unit disc: if

$$
f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n},|z|<1, \text { then } \phi(f)=\int \hat{f}(n) d \phi .
$$

A functional which agrees with the Fourier transform of a regular summation method must annihilate the Hardy space H_{1}. Our space of test functions is often the space M_{p} of functions $f=\because \hat{\int}(n) z^{n}$, analytic in the unit dise, such that

$$
\|f\|_{M_{p}}=\lim \sup \left[(1-r) \int_{0}^{2 \pi}\left|f\left(r^{1^{\prime} p} e^{i \theta}\right)\right|^{p} d \theta / 2 \pi\right]^{1 / p}
$$

is finite for some $p>1$. A functional L which is well defined on a space M_{p} for some $p \geqq 2$ such that $L(1 /(1-z))=1$ agrees with the Fourier transform of a summation method which is slightly stronger than convergence.

Let $s=\left\{s_{n}\right\}$ be an infinite sequence of complex numbers, that is, a continuous function on the discrete additive semigroup of natural numbers N. The sequence s has a continuous extension s^{β} to βN, the Stone-Cech compactification of $N\left(s^{\beta}\right.$ takes the value of if s is unbounded). Throughout the paper, the symbol βZ denotes the Stone-Cech compactification of the space Z, and the continuous extension of a function f defined on Z to βZ will be denoted by f^{β}; for a description of the Stone-Cech compactification we refer the reader to [2, pp. 82-93]. We impose the norm

$$
\begin{aligned}
\|s\| & =\lim \sup \left|s_{n}\right| \\
& =L U B \mid s^{s}(\gamma), \quad \gamma \in \beta N-N
\end{aligned}
$$

on the space m_{0} of bounded sequences. Thus m_{0} is isometric to $C(\beta N-N)$, the ring of continuous complex functions on $\beta N-N$; sequences differing by a null sequence are identified in m_{0}.

Let $\dot{\rho}$ denote a summation method-that is, a linear functional on a subspace of m_{0}. We assume that the $\dot{\rho}$-transform of every sequence s to which $\dot{\rho}$ is applicable is either a continuous function on N or else a continuous function on the half open unit interval I : $[0,1$).

