ON THE SPECTRAL RADIUS FORMULA IN BANACH ALGEBRAS

JAN-ERIK BJÖRK

B will always denote a commutative semi-simple Banach algebra with a unit element. If $f \in B$ then r(f) denotes its spectral radius. A sequence $F = (f_j)_1^{\infty}$ is called a spectral null sequence if $||f_j|| \leq 1$ for each j, while $\lim_{j\to\infty} r(f_j) = 0$. If $F = (f_j)$ is a spectral null sequence we put $r_N(F) = \lim_{j\to\infty} \sup_{j\to\infty} ||f_j^N||^{1/N}$ for each $N \geq 1$. Finally we define the complex number $r_N(B) = \sup_{j\to\infty} \{r_N(F): F\}$ is a spectral null sequence in B. In general $r_N(B) = 1$ for all $N \geq 1$ and the aim of this paper is to study the case when $r_N(B) < 1$ for some N.

We say that B satisfies a bounded inverse formula if there exists some $0 < \varepsilon < 1$ and a constant K_0 such that for all f in B satisfying $||f|| \leq 1$ and $r(f) \leq \varepsilon$, it follows that $||(e - f)^{-1}|| \leq K_0$. In Theorem 3.1. we prove that B satisfies a bounded inverse formula if and only if $r_N(B) < 1$ for some N.

In §1 we give a criterion which implies that B is a sup-norm algebra. In §2 we introduce the so called infinite product of B which will enable us to study spectral null sequences in §3.

1. Sup-norm algebras. Recall that B is a sup-norm algebra if there exists a constant K such that $||f|| \leq Kr(f)$ for all f in B. Clearly this happens if and only if $r_1(B) = 0$. Next we give an example where $r_1(B) = 1$ while $r_2(B) = 0$.

Let $B = C^{1}[0, 1]$ be the algebra of all continuously differentiable functions on the closed unit interval. If $f \in B$ we put ||f|| = $\sup \{|f(x)| + |f'(y)|: 0 \leq x, y \leq 1\}$. The maximal ideal space M_{B} can be identified with [0, 1], so the spectral radius formula shows that $r(f) = \sup \{|f(x)|: 0 \leq x \leq 1\}$. From this we easily deduce that $r_{2}(B) =$ 0. In fact we also notice that $||f^{n}|| \leq n ||f| ||(r(f))^{n-1}$ holds for all $n \geq 2$. We will now prove that this estimate is sharp.

THEOREM 1.1. Let the norm in B satisfy $||f^n|| \leq qn ||f|| r(f)^{n-1}$ for some q < 1 and some $n \geq 2$. Then B is a sup-norm algebra and there is a constant K(n, q) such that $||f|| \leq K(n, q)r(f)$ for all $f \in B$.

LEMMA 1.2. Let $n \ge 3$ and suppose that $||f^n|| \le K ||f|| r(f)^{n-1}$ for all f in B and some constant K. Then there is a constant K(n)such that $||f^2|| \le K(n)K||f|| r(f)$.