ON THE SPECTRAL RADIUS FORMULA IN BANACH ALGEBRAS

Jan-Erik Björk

Abstract

B will always denote a commutative semi-simple Banach algebra with a unit element. If $f \in B$ then $r(f)$ denotes its spectral radius. A sequence $F=\left(f_{j}\right)_{1}^{\infty}$ is called a spectral null sequence if $\left\|f_{j}\right\| \leqq 1$ for each j, while $\lim _{j \rightarrow \infty} r\left(f_{j}\right)=0$. If $F=\left(f_{j}\right)$ is a spectral null sequence we put $r_{N}(F)=$ $\lim \sup _{j \rightarrow \infty}\left\|f_{j}^{N}\right\|^{1 / N}$ for each $N \geqq 1$. Finally we define the complex number $r_{N}(B)=\sup \left\{r_{N}(F)\right.$: F is a spectral null sequence in $B\}$. In general $r_{N}(B)=1$ for all $N \geqq 1$ and the aim of this paper is to study the case when $r_{N}(B)<1$ for some N.

We say that B satisfies a bounded inverse formula if there exists some $0<\varepsilon<1$ and a constant K_{0} such that for all f in B satisfying $\|f\| \leqq 1$ and $r(f) \leqq \varepsilon$, it follows that $\left\|(e-f)^{-1}\right\| \leqq K_{0}$. In Theorem 3.1. we prove that B satisfies a bounded inverse formula if and only if $r_{N}(B)<1$ for some N.

In $\S 1$ we give a criterion which implies that B is a sup-norm algebra. In $\S 2$ we introduce the so called infinite product of B which will enable us to study spectral null sequences in $\S 3$.

1. Sup-norm algebras. Recall that B is a sup-norm algebra if there exists a constant K such that $\|f\| \leqq K r(f)$ for all f in B. Clearly this happens if and only if $r_{1}(B)=0$. Next we give an example where $r_{1}(B)=1$ while $r_{2}(B)=0$.

Let $B=C^{1}[0,1]$ be the algebra of all continuously differentiable functions on the closed unit interval. If $f \in B$ we put $\|f\|=$ $\sup \left\{|f(x)|+\left|f^{\prime}(y)\right|: 0 \leqq x, y \leqq 1\right\}$. The maximal ideal space M_{B} can be identified with $[0,1]$, so the spectral radius formula shows that $r(f)=\sup \{|f(x)|: 0 \leqq x \leqq 1\}$. From this we easily deduce that $r_{2}(B)=$ 0 . In fact we also notice that $\left\|f^{n}\right\| \leqq n\|f\|(r(f))^{n-1}$ holds for all $n \geqq 2$. We will now prove that this estimate is sharp.

Theorem 1.1. Let the norm in B satisfy $\left\|f^{n}\right\| \leqq q n\|f\| r(f)^{n-1}$ for some $q<1$ and some $n \geqq 2$. Then B is a sup-norm algebra and there is a constant $K(n, q)$ such that $\|f\| \leqq K(n, q) r(f)$ for all $f \in B$.

Lemma 1.2. Let $n \geqq 3$ and suppose that $\left\|f^{n}\right\| \leqq K\|f\| r(f)^{n-1}$ for all f in B and some constant K. Then there is a constant $K(n)$ such that $\left\|f^{2}\right\| \leqq K(n) K\|f\| r(f)$.

