MAXIMINIMAX, MINIMAX, AND ANTIMINIMAX THEOREMS AND A RESULT OF R. C. JAMES

S. Simons

This paper contains a number of minimax theorems in various topological and non-topological situations. Probably the most interesting is the following: if X is a nonempty bounded convex subset of a real Hausdorff locally convex space E with dual E^{\prime} and each $\varphi \in E^{\prime}$ attains its supremum on X then

$$
\left.\begin{array}{c}
\text { for all nonempty convex equicontinuous } Y \subset E^{\prime} \\
\inf _{y \in Y} \sup \langle X, y\rangle \leqq \sup _{x \in X} \inf \langle x, Y\rangle
\end{array}\right\}
$$

It is also proved that if $\left(^{*}\right)$ is true and X is complete then X is $w\left(E, E^{\prime}\right)$-compact. Combining these results, a proof of a well known result of R. C. James is obtained.

We suppose throughout that $X \neq \phi, Y \neq \phi$, and $f: X \times Y \rightarrow R$. We write $\mathscr{F}(X)$ for $\{F: \phi \neq F \subset X, F$ is finite $\}$ and define $\mathscr{F}(Y)$ similarly. The maximinimax inequality is the relation

$$
\begin{equation*}
\inf _{G \in \mathcal{F}(Y)} \sup _{x \in \mathcal{X}} \inf f(x, G) \leqq \sup _{F \in \mathcal{T}(X)} \inf _{y \in Y} \sup f(F, y) \tag{1}
\end{equation*}
$$

and the minimax inequality is the relation

$$
\inf _{y \in Y} \sup f(X, y) \leqq \sup _{x \in X} \inf f(x, Y) .
$$

The main result of this paper is Theorem 5, which gives some conditions under which (1) holds. These conditions are completely non-topological and depend only on the fact that certain functions attain their suprema on X. We prove Theorem 5 by defining a "remoteness" relation on the subsets of Y, but we point out that Theorem 5 can also be proved by first reducing the problem to the "iterated limits unequal" situation (by using the technique of Remark 8 and then the diagonal process) and then going through the same steps as in [6], Lemmas 1-7. The approach adopted here embodies a new type of diagonal argument (Lemmas 2 and 3) which might find applications elsewhere, and an argument similar to but subtler than that used in [9], Lemma 2. There is another proof of Theorem 5 that is "frontended" in the sense that we can choose the functions k_{1}, k_{2}, \cdots of Theorem 5 by a purely inductive process without having first to choose a sequence $\left\{y_{n}\right\}_{n \geqq 1}$. The price one pays for the "frontendedness" is that the induction is more complicated and that is why we have avoided the alternative approach.

