NORM CONVERGENCE OF MARTINGALES OF RADON-NIKODYM DERIVATIVES GIVEN A *σ*-LATTICE

R. B. DARST AND G. A. DEBOTH

Suppose that $\{\mathscr{M}_k\}$ is an increasing sequence of sub σ lattices of a σ -algebra \mathscr{A} of subsets of a non-empty set Ω . Let \mathscr{M} be the sub σ -lattice generated by $\bigcup_k \mathscr{M}_k$. Suppose that L^{φ} is an associated Orlicz space of \mathscr{A} -measurable functions, where φ satisfies the \mathcal{A}_2 -condition, and let $h \in L^{\varphi}$. It is verified that the Radon-Nikodym derivative, f_k , of h given \mathscr{M}_k is in L^{φ} and shown that the sequence $\{f_k\}$ converges to f in L^{φ} , where f is the Radon-Nikodym derivative of hgiven \mathscr{M} .

1. Introduction. H. D. Brunk defined conditional expectation given a σ -lattice and established several of its properties in [1]. Subsequently S. Johansen [5] described a Radon-Nikodym derivative given a σ -lattice and showed that the Radon-Nikodym derivative was the conditional expectation in the appropriate case. Then H. D. Brunk and S. Johansen [2] proved an almost everywhere martingale convergence theorem for the Radon-Nikodym derivatives given an increasing sequence of σ -lattices. We shall establish norm convergence of these derivatives in L_1 and in the Orlicz spaces L^{φ} , where Φ satisfies the Δ_2 -condition. The theory of these Orlicz spaces can be found in [6], so we shall assume and build upon the results therein. Thereby, we can place fewer restrictions on Φ and obtain L_1 -convergence as a byproduct.

2. Notation. Let \mathscr{A} be a σ -algebra of subsets of a (nonempty) set Ω , and let μ be a non-negative (bounded) σ -additive function defined on \mathscr{A} .

For our purposes the following information about Φ will suffice: Φ is an even, convex function defined on the real numbers, R, with $\Phi(0) = 0$ and $\Phi(x) \neq 0$ for some x. Moreover, there exists K > 0with $\Phi(2x) \leq K\Phi(x)$ for all $x \in R$. This latter property is called the \varDelta_2 -condition; it implies

$$(1) \quad \varPhi(x+y) = \varPhi\left(2\left(\frac{x+y}{2}\right)\right) \leq K\varPhi\left(\frac{x+y}{2}\right) \leq \left(\frac{K}{2}\right)[\varPhi(x) + \varPhi(y)].$$

Then L^{φ} denotes the collection of (real valued) *A*-measurable functions *h* defined on Ω with $\int_{\Omega} \Phi(h) d\mu < \infty$. Since Φ is convex and not