NORM CONVERGENCE OF MARTINGALES OF RADON-NIKODYM DERIVATIVES GIVEN A σ-LATTICE

R. B. Darst and G. A. DeBoth

Abstract

Suppose that $\left\{\mathscr{M}_{k}\right\}$ is an increasing sequence of sub σ lattices of a σ-algebra \mathscr{A} of subsets of a non-empty set Ω. Let \mathscr{M} be the sub σ-lattice generated by $\mathrm{U}_{k} \mathscr{N}_{k}$. Suppose that L^{ϕ} is an associated Orlicz space of \mathscr{A}-measurable functions, where Φ satisfies the Δ_{2}-condition, and let $h \in L^{\phi}$. It is verified that the Radon-Nikodym derivative, f_{k}, of h given \mathscr{A}_{k} is in L^{φ} and shown that the sequence $\left\{f_{k}\right\}$ converges to f in L^{ϕ}, where f is the Radon-Nikodym derivative of h given \mathscr{M}.

1. Introduction. H. D. Brunk defined conditional expectation given a σ-lattice and established several of its properties in [1]. Subsequently S. Johansen [5] described a Radon-Nikodym derivative given a σ-lattice and showed that the Radon-Nikodym derivative was the conditional expectation in the appropriate case. Then H. D. Brunk and S. Johansen [2] proved an almost everywhere martingale convergence theorem for the Radon-Nikodym derivatives given an increasing sequence of σ-lattices. We shall establish norm convergence of these derivatives in L_{1} and in the Orlicz spaces L^{ϕ}, where Φ satisfies the Δ_{2}-condition. The theory of these Orlicz spaces can be found in [6], so we shall assume and build upon the results therein. Thereby, we can place fewer restrictions on Φ and obtain L_{1}-convergence as a byproduct.
2. Notation. Let \mathscr{A} be a σ-algebra of subsets of a (nonempty) set Ω, and let μ be a non-negative (bounded) σ-additive function defined on \mathscr{A}.

For our purposes the following information about Φ will suffice: Φ is an even, convex function defined on the real numbers, R, with $\Phi(0)=0$ and $\Phi(x) \neq 0$ for some x. Moreover, there exists $K>0$ with $\Phi(2 x) \leqq K \Phi(x)$ for all $x \in R$. This latter property is called the Δ_{2}-condition; it implies
(1) $\Phi(x+y)=\Phi\left(2\left(\frac{x+y}{2}\right)\right) \leqq K \Phi\left(\frac{x+y}{2}\right) \leqq\left(\frac{K}{2}\right)[\Phi(x)+\Phi(y)]$.

Then L^{Φ} denotes the collection of (real valued) \mathscr{A}-measurable functions h defined on Ω with $\int_{\Omega} \Phi(h) d \mu<\infty$. Since Φ is convex and not

