HOMOLOGY OF A GROUP EXTENSION

YASUTOSHI NOMURA

A topological method has been used by Ganea to derive the homology exact sequence of a central extension. In the same spirit a homology exact sequence is constructed for a group extension with certain homological restrictions. An immediate consequence is an exact sequence of Kervaire which is of some significance in algebraic K-theory.

Let

$$(1) \qquad \qquad 1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$$

be an extension of groups. Each element g of G induces an automorphism $\theta(g): N \to N \operatorname{via} \theta(g)n = gng^{-1}$ for $n \in N$. In what follows we denote by $H_k(G)$ the kth homology group of G with coefficients in the additive group of integers Z, on which G operates trivially. Let Γ_k denote the subgroup of $H_k(N)$ generated by $\theta(g)_*c - c, c \in H_k(N), g \in G$. We say that G operates trivially on $H_k(N)$ if $\Gamma_k = \{0\}$. Let $\overline{N} \times G$ be the semi-direct product of N and G with respect to the operation $\theta(g)$ and let P_k denote the kernel of $\pi_*: H_k(N \times G) \to H_k(G)$, where $\pi: N \times G \to G$ is given by $\pi(n, g) = g$. We shall prove

THEOREM 1. Suppose n = 1 or $H_k(N) = 0$ for $1 \leq k \leq n-1$ $(n \geq 2)$. Then there exists an exact sequence

$$\begin{array}{ccc} P_{2n} & \longrightarrow & H_{2n}(G) & \longrightarrow & H_{2n}(Q) & \longrightarrow & P_{2n-1} & \longrightarrow & \cdots & \longrightarrow & P_{n+1} & \longrightarrow & H_{n+1}(G) \\ & \longrightarrow & H_{n+1}(Q) & \longrightarrow & H_n(N)/\varGamma_n & \longrightarrow & H_n(G) & \longrightarrow & H_n(Q) & \longrightarrow & 0 \end{array}$$

Further assume G operates trivially on $H_n(N)$ and that $H_1(Q) = 0$. Then there exists an exact sequence

$$H_{n+1}(N) \longrightarrow H_{n+1}(G) \longrightarrow H_{n+1}(Q) \longrightarrow H_n(N) \longrightarrow H_n(G) \longrightarrow H_n(Q) \longrightarrow 0$$

We note that the first part of Theorem 1 for n = 1 is just Theorem 3.1 of [7].

Now we call an epimorphism $f: H \to H'$ central if Ker f is contained in the center of H. Let

