ON A REPRESENTATION OF A STRONGLY HARMONIC RING BY SHEAVES

KWANGIL KOH

A ring R is strongly harmonic provided that if M_1 , M_2 are a pair of distinct maximal modular ideals of R, then there exist ideals \mathscr{A} and \mathscr{B} such that $\mathscr{A} \not\subseteq M_1$, $\mathscr{B} \not\subseteq M_2$ and $\mathcal{AB} = 0$. Let $\mathcal{M}(R)$ be the maximal modular ideal space of R. If $M \in \mathcal{M}(R)$, let $O(M) = \{r \in R \mid \text{for some } y \notin M, rxy = 0\}$ for every $x \in R$. Define $\mathscr{R}(R) = \bigcup \{R/O(M) \mid M \in \mathscr{M}(R)\}.$ If R is a strongly harmonic ring with 1, then R is isomorphic to the ring of global sections of the sheaf of local rings $\mathscr{R}(R)$ over $\mathscr{M}(R)$. Let $\Gamma(\mathscr{M}(R), \mathscr{R}(R))$ be the ring of global sections of $\mathscr{R}(R)$ over $\mathscr{M}(R)$. For every unitary (right) R-module A, let $A_M = \{a \in A \mid aRx = 0 \text{ for some } x \notin M\}$ and let $\widetilde{A} = \bigcup \{A/A_M \mid M \in \mathcal{M}(R)\}$. Define $\widehat{a}(M) = a + A_M$ and $\hat{r}(M) = r + O(M)$ for every $a \in A$, $r \in R$ and $m \in \mathcal{M}(R)$. Then the mapping $\xi_A: a \mapsto \hat{a}$ is a semi-linear isomorphism of Aonto $\Gamma(\mathscr{M}(R)), \mathscr{R}(R))$ —module $\Gamma(\mathscr{M}(R), A)$ in the sense that ξ_A is a group isomorphism satisfying $\xi_A(ar) = \hat{a}\hat{r}$ for every $a \in A$ and $r \in R$.

1. If R is a ring with 1, R is called *harmonic* (or regular) if the maximal modular ideal space, say $\mathcal{M}(R)$, with the hull-kernel topology, is a Hausdorff space (refer [5]). A ring R is strongly harmonic provided that for any pair of distinct maximal modular ideals M_1 , M_2 there exist ideals \mathcal{N} , \mathcal{B} in R such that $\mathcal{N} \nsubseteq M_1$, $\mathscr{B} \not\subseteq M_2$ and $\mathscr{A} \mathscr{B} = 0$. For any nonempty subset S of a ring R define $(S)^{\perp} = \{r \in R \mid sr = 0 \text{ for every } s \in S\}$ and if $a \in R$ let aR_1 be the principal right ideal generated by a. If M is a prime ideal of a ring R let $O(M) = \{r \in R \mid (rR_1)^{\perp} \subseteq M\}$. An ideal \mathscr{A} of a ring R is called *M*-primary for some maximal modular ideal M of R provided that M/\mathscr{A} is the unique maximal modular ideal of R/\mathscr{A} and if \mathscr{M}' is an ideal of R such that $\mathscr{M}' \subseteq \mathscr{M}$ and $\mathscr{M}' \neq \mathscr{M}$ then R/\mathscr{M}' is no longer a local ring (here by a local ring we mean a ring with the unique maximal modular ideal). The principal results in this paper are as follows: Let R be a ring such that if R/S is a local ring for some ideal S of R then R/S has a unit. Then R is strongly harmonic if and only if O(M) is M-primary for every maximal modular ideal M of R. If R is a strongly harmonic ring with 1 then R is isomorphic to $\Gamma(\mathcal{M}(R), \mathcal{R}(R))$ the ring of global sections of the sheaf of local rings $\mathscr{R}(R) = \bigcup \{R/O(M) \mid M \in \mathscr{M}(R)\}$ over $\mathcal{M}(R)$ and if A is a unitary right R-module then the mapping $\xi_A: a \mapsto \hat{a}$ is a semi-linear isomorphism of A onto $\Gamma(\mathscr{M}(R), \mathscr{R}(R))$ -