STRONG HEREDITY IN RADICAL CLASSES

R. L. TANGEMAN

In a recent paper, W. G. Leavitt has called a radical class \mathscr{P} in a universal class \mathscr{W} of not necessarily associative rings strongly hereditary if $\mathscr{P}(I) = I \cap \mathscr{P}(R)$ for all ideals I of any ring $R \in \mathscr{W}$. In this paper, strongly hereditary radicals are investigated and a new construction is provided for the minimal strongly hereditary radical containing a given class in \mathscr{W} . Nonassociative versions of some results of E. P. Armendariz on semisimple classes are proved, including a characterization of semisimple classes corresponding to strongly hereditary radicals.

Unless otherwise indicated, \mathscr{W} is assumed to be a universal class of not necessarily associative rings. If \mathscr{P} is any radical class in \mathscr{W} , we denote the class of \mathscr{P} -semisimple rings in \mathscr{W} by \mathscr{SP} . We use the notation $I \leq R$ to denote that I is an ideal of R. For any class \mathscr{M} we denote by \mathscr{HM} and \mathscr{IM} , respectively, the homomorphic closure and ideal closure of \mathscr{M} .

For any radical class $\mathscr{P} \subseteq \mathscr{W}$, Leavitt in [7] has defined $\mathscr{GP} = \{J' | J \leq I \leq R, J \in \mathscr{P}, \text{ and } J' \text{ is the ideal of } R \text{ generated by } J\}$. Radical classes \mathscr{P} for which $\mathscr{P} = \mathscr{GP}$ are said to satisfy property (a). Theorem 1 of [7] states that a hereditary radical class \mathscr{P} is strongly hereditary if and only if \mathscr{P} satisfies property (a). In [8], it is shown that any subclass \mathscr{M} of \mathscr{W} is contained in a unique minimal radical class satisfying property (a).

Some preliminary results are required.

LEMMA 1.1. [2]. Let \mathscr{P} be any radical class in \mathscr{W} . Then \mathscr{SP} is hereditary if and only if for each $R \in \mathscr{W}$ with $I \leq R$ we have $\mathscr{P}(I) \subseteq (R)$.

LEMMA 1.2. Let \mathscr{P} be any radical class. Then \mathscr{P} is strongly hereditary if and only if both \mathscr{P} and \mathscr{SP} are hereditary.

Proof. If \mathscr{P} is strongly hereditary, $\mathscr{P}(I) = I \cap \mathscr{P}(R)$ for each $I \leq R$, so \mathscr{P} and \mathscr{SP} are hereditary. Suppose \mathscr{P} and \mathscr{SP} are hereditary and let $I \leq R$. By Lemma 1.1 $\mathscr{P}(I) \subseteq I \cap \mathscr{P}(R)$. Also since $\mathscr{P}(R) \in \mathscr{P}$ and \mathscr{P} is hereditary, $I \cap \mathscr{P}(R) \in \mathscr{P}$. Since $I \cap \mathscr{P}(R) \leq I$, we have $I \cap \mathscr{P}(R) \subseteq \mathscr{P}(I)$.

LEMMA 1.3. Let \mathscr{P} be a radical class satisfying property (a). Then \mathscr{SP} is hereditary. If \mathscr{P} is hereditary, \mathscr{P} satisfies property