A TECHNIQUE FOR THE DETECTION OF OSCILLATION OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

V. Komkov

An iterative procedure is used to determine the oscillatory properties of second order linear differential equations, using a repeated application of the Kummer-Liouville transformation.

1. The Kummer-Liouville transformation. We shall consider the oscillatory properties of the equation

$$(a(t)x')' + c(t)x = 0 \qquad \left(' = rac{d}{dt}
ight)$$

(1)

Let
$$\varphi(t) \in C^1[t_0, \infty)$$
, $\varphi'(t) > 0$, $\lim_{t \to \infty} \varphi(t) = \infty$,

 $c(t) \in C[t_0, \infty)$.

 $\psi(t)\in C^2[t_0,\infty),\ \psi(t)
eq 0$, $t_0\leq t<\infty$.

It was shown by Kummer ([5], 1834) that the transformation $\tau =$ $\varphi(t), x(t) = \psi(t)y(\tau)$ transforms the equation (1) into an equation of the same form:

(1^a)
$$(R(\tau)y'(\tau))' + Q(\tau)y(\tau) = 0$$
.

The formulas for $R(\tau)$, $Q(\tau)$ are:

$$egin{aligned} R(au(t)) &= a(t) arphi'(t) \psi^{2}(t) \ Q(au(t)) &= [(a(t) \psi'(t))' + c(t) \psi(t) [arphi'(t)]^{-1}] \psi(t) \;, \end{aligned}$$

(see [5], or the expository article [7]). Moreover, if $\varphi(t)$ is chosen to be

$$arphi(t)=\int_{t_0}^t [a(\hat{arphi})\psi^2(\hat{arphi})]^{-1}d\hat{arphi}$$
 ,

then the equation (1^{a}) assumes the form

(2)
$$y''(\tau) + \sigma(\tau)y(\tau) = 0.$$

In the specific case when $\int_t^\infty [a(\xi)]^{-1}d\xi = \infty$, the choice $\psi(t) \equiv 1$ results in the formula