STRUCTURE OF RIGHT SUBDIRECTLY IRREDUCIBLE RINGS II

M. G. DESHPANDE

The object of this paper is to determine the structure and properties of right subdirectly irreducible rings which are either local or self-injective. The rings in the latter class form a special case of the so-called right PF rings. By employing the notion of Feller's X-rings, it is proved that right PF X-rings are finite direct sums of full matrix rings over self-injective right subdirectly irreducible rings. Thus, whether or not right PF X-rings are left PF depends on the answer to the same question for the more elementary case of self-injective right subdirectly irreducible rings.

For a discussion of artinian and noetherian RSI rings, see [2].

1. Notation and preliminaries. All rings considered have an identity and all modules are unitary. A module M_R is *R*-subdirectly irreducible if the intersection of all nonzero submodules of *M* is nonzero, which will then be called the heart of M_R . A ring *R* is *RSI* (right subdirectly irreducible) if R_R is *R*-subdirectly irreducible. The heart *H* of a *RSI* ring *R* is a two sided ideal. These and some of the following definitions and observations are given in [2] and we rewrite them for completeness. We will always use the following notation is connection with a *RSI* ring *R*. *H* = heart, $N = H^i = \{x \in R: xH = 0\}$, $D = \text{Hom}_R(H_R, H_R)$, $\hat{R} = \text{injective}$ hull of R_R , $K = \text{Hom}_R(\hat{R}, \hat{R})$ and $L = \{f \in K: \ker f \neq 0\}$. In addition, for a local ring *R*, *J* will always denote the unique maximal right ideal. A ring *R* will be termed self-injective if R_R is injective.

We state the following theorem showing the relationship between R, N, H, D, K, L which has been proved in [2, p. 319].

THEOREM 1.1. If R is RSI, then R/N is isomorphic to a subring of the division ring D and $D \cong K/L$.

In connection with QF-1 algebras, faithful indecomposable modules play an important role. In the following proposition we prove that a *RSI* ring has a unique faithful indecomposable injective module. In this respect, it may be remarked that an artinian semisimple ring which is not simple is an example of a ring for which faithful indecomposable injectives don't exist; while over the ring of integers, for each prime p, by using [12, p. 145, Th. 7] or otherwise,