AN ALGEBRA OF GENERALIZED FUNCTIONS ON AN OPEN INTERVAL: TWO-SIDED OPERATIONAL CALCULUS

GREGERS KRABBE

Let (a, b) be any open sub-interval of the real line, such that $-\infty \leq a < 0 < b \leq \infty$. Let $L^{\operatorname{loc}}(a, b)$ be the space of all the functions which are integrable on each interval (a', b')with a < a' < b' < b. There is a one-to-one linear transformation \mathfrak{T} which maps $L^{\operatorname{loc}}(a, b)$ into a commutative algebra \mathscr{A} of (linear) operators. This transformation \mathfrak{T} maps convolution into operator-multiplication; therefore, this transformation \mathfrak{T} is a useful substitute for the two-sided Laplace transformation; it can be used to solve problems that are not solvable by the distributional transformations (Fourier or bi-lateral Laplace).

In essence, the theme of this paper is a commutative algebra \mathcal{A} of generalized functions on the interval (a, b); besides containing the function space $L^{\text{loc}}(a, b)$, the algebra \mathscr{A} contains every element of the distribution space $\mathscr{D}'(a, b)$ which is regular on the interval (a, 0). The algebra \mathcal{A} is the direct sum $\mathcal{A}_{-} \bigoplus \mathcal{A}_{+}$, where \mathcal{A}_{-} (respectively, \mathcal{A}_{+}) (a, 0)(respectively, to the interval (0, b)). There is a subspace \mathscr{Y} of \mathscr{A} such that, if $y \in \mathscr{Y}$, then y has an "initial value" $\langle y, 0-\rangle$ and a "derivative" $\partial_t y$ (which corresponds to the usual distributional derivative). If y is a function f() which is locally absolutely continuous on (a, b), then y belongs to \mathcal{Y} , the initial value $\langle y, 0- \rangle$ equals f(0), and $\partial_t y$ corresponds to the usual derivative f'(). If y is a distribution (such as the Dirac distribution) whose support is a locally finite subset of the interval (a, b), then both y and $\partial_t y$ belong to the subspace \mathscr{Y} . In case $a = -\infty$ and $b = \infty$, the subspace \mathscr{Y} contains the distribution space \mathscr{D}'_+ .

The resulting operational calculus takes into account the behavior of functions to the left of the origin (in case $a = -\infty$ and $b = \infty$, the whole real line is accounted for—whereas Mikusiński's operational calculus only accounts for the positive axis). Since the functions are not subjected to growth restrictions, the transformation \mathfrak{T} is a useful substitute for the two-sided Laplace transformation (no strips of convergence need to be considered: see Examples 2.21 and the four problems 6.3-6.7). Problems such as

$$rac{d^2}{dt^2} y + y = \sec rac{\pi t}{2lpha} \qquad (-lpha < t < lpha)$$