A DECOMPOSITION THEOREM FOR BIADDITIVE PROCESSES

W. N. Hudson

This paper treats a class of stochastic processes called biadditive processes and gives a proof of a decomposition of their sample functions. Informally, a biadditive proces $X(s, t)$ is a process indexed by two time parameters whose "increments" over disjoint rectangles are independent. The increments of such a process are the second differences

$$
X\left(s_{2}, t_{2}\right)-X\left(s_{1}, t_{2}\right)-X\left(s_{2}, t_{1}\right)+X\left(s_{1}, t_{1}\right)
$$

where $s_{1}<s_{2}$ and $t_{1}<t_{2}$. The decomposition theorem states that every centered biadditive process is the sum of four independent biadditive processes: one with jumps in both variables, two with jumps in one variable and continuous in probability in the other, and a fourth process which is jointly continuous in probability.

This decomposition is similar to one for processes with independent increments and in the proofs of both results a major role is played by the theory of centralized sums of independent random variables.

More formally, let $P_{1}=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ and $P_{2}=\left\{t_{1}, t_{2}, \cdots, t_{m}\right\}$ be two partitions of $\left[0, s_{n}\right]$ and $\left[0, t_{m}\right]$ respectively. Define $P_{1} \times P_{2}$ to be the corresponding partition of $\left[0, s_{n}\right] \times\left[0, t_{m}\right]$ into rectangles whose vertices are the $\left(s_{i}, t_{j}\right)$'s. Let $\Delta_{i j}$ denote the increment

$$
\Delta_{i j}=X\left(s_{i+1}, t_{j+1}\right)-X\left(s_{i}, t_{j+1}\right)-X\left(s_{i+1}, t_{j}\right)+X\left(s_{i}, t_{j}\right)
$$

over the rectangle with vertices $\left(s_{i+1}, t_{j+1}\right),\left(s_{i}, t_{j+1}\right),\left(s_{i+1}, t_{j}\right)$ and $\left(s_{i}, t_{j}\right)$. Then if the increments

$$
\left\{\Delta_{i j}: i=0,1, \cdots, n-1, j=0,1, \cdots, m-1\right\}
$$

corresponding to any partition $P_{1} \times P_{2}$ are independent and if $X(s, 0)=$ $0=X(0, t)$ for all s and t not less than zero, $X(s, t)$ is called biadditive.

It is easy to construct some examples of biadditive processes. For instance, if $\left\{Y_{i j}\right\}_{i, j=0}^{\infty}$ is a doubly infinite sequence of independent random variables, then it is easy to see that the process

$$
X(s, t)=\sum_{i<s} \sum_{j<t} Y_{i j}
$$

is biadditive. A nontrivial example of a biadditive process is obtained when the space C_{2} of continuous functions of two variables on $[0, \infty) \times$ $[0, \infty)$ is given the Wiener-Yeh measure and the process $X(s, t)$ is the

