A DECOMPOSITION THEOREM FOR BIADDITIVE PROCESSES

W. N. HUDSON

This paper treats a class of stochastic processes called biadditive processes and gives a proof of a decomposition of their sample functions. Informally, a biadditive proces X(s, t)is a process indexed by two time parameters whose "increments" over disjoint rectangles are independent. The increments of such a process are the second differences

$$X(s_2, t_2) - X(s_1, t_2) - X(s_2, t_1) + X(s_1, t_1)$$

where $s_1 < s_2$ and $t_1 < t_2$. The decomposition theorem states that every centered biadditive process is the sum of four independent biadditive processes: one with jumps in both variables, two with jumps in one variable and continuous in probability in the other, and a fourth process which is jointly continuous in probability.

This decomposition is similar to one for processes with independent increments and in the proofs of both results a major role is played by the theory of centralized sums of independent random variables.

More formally, let $P_1 = \{s_1, s_2, \dots, s_n\}$ and $P_2 = \{t_1, t_2, \dots, t_m\}$ be two partitions of $[0, s_n]$ and $[0, t_m]$ respectively. Define $P_1 \times P_2$ to be the corresponding partition of $[0, s_n] \times [0, t_m]$ into rectangles whose vertices are the (s_i, t_j) 's. Let Δ_{ij} denote the increment

$$arpert_{ij} = X(s_{i+1}, t_{j+1}) - X(s_i, t_{j+1}) - X(s_{i+1}, t_j) + X(s_i, t_j)$$

over the rectangle with vertices (s_{i+1}, t_{j+1}) , (s_i, t_{j+1}) , (s_{i+1}, t_j) and (s_i, t_j) . Then if the increments

$$\{arDelta_{ij} \colon i=0,\,1,\,\cdots,\,n-1,\,j=0,\,1,\,\cdots,\,m-1\}$$

corresponding to any partition $P_1 \times P_2$ are independent and if X(s, 0) = 0 = X(0, t) for all s and t not less than zero, X(s, t) is called biadditive.

It is easy to construct some examples of biadditive processes. For instance, if $\{Y_{ij}\}_{i,j=0}^{\infty}$ is a doubly infinite sequence of independent random variables, then it is easy to see that the process

$$X(s, t) = \sum_{i < s} \sum_{j < t} Y_{ij}$$

is biadditive. A nontrivial example of a biadditive process is obtained when the space C_2 of continuous functions of two variables on $[0, \infty) \times [0, \infty)$ is given the Wiener-Yeh measure and the process X(s, t) is the