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UNICOHERENT COMPACTIFICATIONS

M. H. CLAPP AND R. F. DICKMAN, JR.

In this paper we give necessary and sufficient conditions
for the Freudenthal compactification of a rimcompact, locally
connected and connected Hausdorff space to be unicoherent. We
give several necessary and sufficient conditions for a locally
connected generalized continuum to have a unicoherent com-
pactification and show that if such a space X has a unicoherent
compactification, then γX is the smallest unicoherent com-
pactification of X in the usual ordering of compactifications.

A connected topological space X is said to be unicoherent if, H> K
is connected whenever X — H + K where H and K are closed connected
sets. A continuum is a compact connected metric space and a gen-
eralized continuum is a locally compact, connected, separable metric
space. By a mapping we will always mean a continuous function.
If 2? is a subset of a space X, the closure of B in X will be denoted
by clx B and the boundary of B in X will be denoted by Fr x B. An
open set (respectively, a closed set) of a space X will be called a
7-open (respectively, 7-closed) subset of X provided it has a compact
boundary in X. A space is rimcompact (or semicompact) provided
every point has arbitrarily small neighborhoods with compact bound-
aries. All compactifications considered here are Hausdorff.

In [7] K. Morita showed that for any rimcompact Hausdorff
space X there exists a topologically unique compactification jX of X
satisfying:

(a) For every point x of yX and every open set R of ΎX con-
taining x there exists an open set V of yX containing x such that
VdR and Fr r z7cX

(b) Any two disjoint 7-closed subsets of X have disjoint closures
in yX.

Furthermore if C is any compactification of X satisfying (a), there
exists a mapping h of yX onto C such that h \ X is the identity map.
The compactification ΊX of X is called the Freudenthal compactification
of X after H. Freudenthal who first defined it [4].

DEFINITION. We say that a connected space X is 7-unicoherent
if whenever X = H + K, where H and K are 7-closed and connected
sets, H K is connected.

THEOREM 1. If X is a locally connected, connected, rimcompact
Hausdorff space, then jX, the Freudenthal compactification of X, is
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