INVARIANT FUNCTIONS OF AN ITERATIVE PROCESS FOR MAXIMIZATION OF A POLYNOMIAL

Peter F. Stebe

Let P be a polynomial with real non-negative coefficients and variables $x_{i, j}, i=1, \cdots, k, j=1, \cdots, n_{i}$. Let $d=\sum_{1}^{k} n_{i}$. Let R_{d} be the d-dimensional real vector space. Let \tilde{M} be the subset of R_{d} defined by

$$
\tilde{M}=\left\{x \mid x \in R_{d}, x_{i, j} \geqq 0, \sum_{j=1}^{n_{i}} x_{i, j}=1\right\}
$$

where the symbols $x_{i, j}$ denote the components of x. If x is a vector in the interior of \tilde{M}, define $\tau(x)$ as the vector in \tilde{M} with components $x_{i, j}^{\prime}$ given by

$$
x_{i, j}^{\prime}=\frac{x_{i, j} \frac{\partial P}{\partial x_{i, j}}}{\sum_{h=1}^{n_{i}} x_{i, h} \frac{\partial P}{\partial x_{i, h}}}
$$

The expression on the right is evaluated at x. The transformation τ is defined on the boundary of \tilde{M} by the same formula if the denominators do not vanish.

Let \widetilde{F} be the set of fixed points of τ in \tilde{M}. It is shown that if τ is a homeomorphism of \widetilde{M} onto itself, there is a set of $d-k$ functions f_{1}, \cdots, f_{d-k} defined on $\tilde{M}-\widetilde{F}$ such that $f_{i}(x)=f_{i}(\tau(x))$ for $x \in \tilde{M}-\widetilde{F}$. The functions f_{i} are continuous and independent on an open dense subset of $\tilde{M}-\widetilde{F}$. Explicit expressions for certain invariant functions are also obtained.

1. The transformation τ. The transformation τ defined in the introduction can be used to iteratively find local maxima for the polynomial P. It was shown by L. E. Baum and J. A. Eagon [1] that if P is a homogeneous polynomial with positive coefficients and if x is an element of \widetilde{M} such that $\tau(x)$ is defined then either $\tau(x)=(x)$ or $P(\tau(x))>P(x)$. This result was generalized at the suggestion of 0 . Rothaus by L. E. Baum and G. R. Sell [2] to arbitrary polynomials with positive coefficients.

It will be assumed in this paper that the transformation τ is a homeomorphism of \tilde{M} onto itself. According to an unpublished result of L. E. Baum, τ is a homeomorphism of \widetilde{M} onto itself if and only if the expression for P as a sum of distinct monomials with positive coefficients contains monomials $c_{i, j} x_{i, j}{ }^{w_{i}, j}$ for all $i=1, \cdots, k, j=1, \cdots, n_{i}$ where $c_{i, j}>0$ and $w_{i, j}$ is an integer greater than zero. Since this condition is satisfied if and only if τ is defined on all of \widetilde{M}, a necessary and sufficient condition that τ is a homeomorphism of \tilde{M} onto itself

