INVARIANT FUNCTIONS OF AN ITERATIVE PROCESS FOR MAXIMIZATION OF A POLYNOMIAL

PETER F. STEBE

Let P be a polynomial with real non-negative coefficients and variables $x_{i,j}$, $i = 1, \dots, k, j = 1, \dots, n_i$. Let $d = \sum_{i=1}^{k} n_i$. Let R_d be the d-dimensional real vector space. Let \widetilde{M} be the subset of R_d defined by

$$ilde{M} = \left\{ x \mid x \in R_d, \, x_{i,j} \geq 0, \, \sum\limits_{j=1}^{n_i} x_{i,j} = 1
ight\}$$

where the symbols $x_{i,j}$ denote the components of x. If x is a vector in the interior of \widetilde{M} , define $\tau(x)$ as the vector in \widetilde{M} with components $x'_{i,j}$ given by

$$x'_{i,j} = rac{x_{i,j} rac{\partial P}{\partial x_{i,j}}}{\sum\limits_{h=1}^{n_i} x_{i,h} rac{\partial P}{\partial x_{i,h}}} \ .$$

The expression on the right is evaluated at x. The transformation τ is defined on the boundary of \tilde{M} by the same formula if the denominators do not vanish.

Let \tilde{F} be the set of fixed points of τ in \tilde{M} . It is shown that if τ is a homeomorphism of \tilde{M} onto itself, there is a set of d-k functions f_1, \dots, f_{d-k} defined on $\tilde{M}-\tilde{F}$ such that $f_i(x) = f_i(\tau(x))$ for $x \in \tilde{M} - \tilde{F}$. The functions f_i are continuous and independent on an open dense subset of $\tilde{M} - \tilde{F}$. Explicit expressions for certain invariant functions are also obtained.

1. The transformation τ . The transformation τ defined in the introduction can be used to iteratively find local maxima for the polynomial P. It was shown by L. E. Baum and J. A. Eagon [1] that if P is a homogeneous polynomial with positive coefficients and if x is an element of \tilde{M} such that $\tau(x)$ is defined then either $\tau(x) = (x)$ or $P(\tau(x)) > P(x)$. This result was generalized at the suggestion of 0. Rothaus by L. E. Baum and G. R. Sell [2] to arbitrary polynomials with positive coefficients.

It will be assumed in this paper that the transformation τ is a homeomorphism of \tilde{M} onto itself. According to an unpublished result of L. E. Baum, τ is a homeomorphism of \tilde{M} onto itself if and only if the expression for P as a sum of distinct monomials with positive coefficients contains monomials $c_{i,j}x_{i,j}^{w_{i,j}}$ for all $i=1, \dots, k, j=1, \dots, n_i$ where $c_{i,j} > 0$ and $w_{i,j}$ is an integer greater than zero. Since this condition is satisfied if and only if τ is defined on all of \tilde{M} , a necessary and sufficient condition that τ is a homeomorphism of \tilde{M} onto itself