MULTIPLIERS OF TYPE (p, p) AND MULTIPLIERS OF THE GROUP L_p -ALGEBRAS

KELLY MCKENNON

Let G be a locally compact group with left Haar measure λ and suppose $1 \leq p < \infty$. The purpose of this paper is to exhibit an isometric isomorphism ω of the Banach algebra M_p of all right multipliers on $L_p = L_p(G, \lambda)$ into the normed algebra m_p of all right multipliers on the group L_p -algebra L_p^t . When G is either commutative or compact, ω is surjective.

A function $f \in L_p$ is said to be *p*-temperate if

(1)
$$h*f(x) = \int_{G} f(t)h(t^{-1}x)d\lambda(t)$$
 exists for λ -almost all $x \in G$ whenever h is in L_{p} ;

(2)
$$h*f$$
 is in L_n for all $h \in L_n$;

(3)
$$\sup \{ \|h * f\|_p : h \in L_p, \|h\|_p \leq 1 \} < \infty$$

It was shown in [6], Theorem 1, that $f \in L_p$ is *p*-temperate if

$$(4) \qquad \qquad \sup \{ \|h * f\|_p : h \in C_{\infty}, \|h\|_p \leq 1 \} < \infty$$

where C_{00} denotes the set of all continuous complex-valued functions on G with compact support. The set of all p-temperate functions will be written as L_p^t . Each function $f \in C_{00}$ is in L_p^t and so L_p^t comprises a dense subspace of L_p . For $f \in L_p^t$, the number given by either (3) or (4) will be written as $||f||_p^t$. The function $|| ||_p^t$ so defined is a norm under which L_p^t is a normed algebra. This normed algebra will be referred to as the group L_p -algebra.

By a right multiplier on L_p^t will be meant a bounded linear operator T on L_p^t such that

(5)
$$T(f*g) = f*T(g) \quad \text{for all } f \text{ and } g \text{ in } L_p^t.$$

The set of all such T, which constitutes a normed algebra under the usual operator norm, will be written as \mathfrak{m}_p . Write $\mathfrak{B}p$ for the Banach algebra of all bounded linear operators on L_p . An operator $T \in \mathfrak{B}p$ is said to be a right multiplier of type (p, p) (see [3]) if

(6)
$$T(xf) = {}_{x}T(f) \quad \text{for all } f \in L_{p}$$

where $_{x}h(y) = h(xy)$ for each function h on G. The set of all such T will be written as M_{p} . It is a complete sub-algebra of \mathfrak{B}_{p} .

The group L_p -algebra was utilized in [6] to study a related algebra A_p , of which the Banach algebra of left multipliers was found