RESTRICTING ISOTOPIES OF SPHERES

J. A. CHILDRESS

In this note we consider the problem of determining whether isotopic homeomorphisms of S^n that agree on a subset X of S^n are isotopic by an isotopy that is fixed on X. In particular, in the *PL* category, an affirmative answer is obtained for X a locally unknotted closed cell or an unknotted sphere.

If X and Y are polyhedra and h_0 and h_1 are homeomorphisms of X onto Y, then an *isotopy* between h_0 and h_1 is a homeomorphism $H: X \times I \to Y \times I(I = [0, 1])$ such that $H(x, t) = (h_t(x), t)$ for all $(x, t) \in X \times I$. Two embeddings f, g of X in Y are said to be ambient isotopic if there is an isotopy $H: Y \times I \to Y \times I$ such that $h_0 = \text{id.}$, and $h_1f = g$. The isotopy H is fixed on $A \subset Y$ if H(x, t) = (x, t) for all $(x, t) \in A \times I$. Let S^n denote the standard n-sphere, E^n Euclidean n-space, Δ^k a k-simplex in some combinatorial triangulation of S^n or E^n , and let "PL" denote "piecewise linear." If k < n we regard S^n as the (n - k)-fold suspension of S^k , so there is a natural inclusion $S^k \subset S^n$. A PL embedding $i: S^k \to S^n$ is unknotted if $(S^n, i(S^k))$ PL (S^n, S^k) , which is always the case if $k \leq n - 3$. Clearly an unknotted sphere Σ^k in S^n is PL locally flat; i.e., for each point $x \in \Sigma^k$, there is a neighborhood U of x in S^n such that

$$(U, \ U \cap \ \Sigma^k) \mathrel{PL} (E^n, \ E^k)$$
 .

The main results of this paper are the following:

THEOREM 1. Let $X = \Delta^k$ or $X = S^k$, and let $i: X \to S^n$ be a PLembedding, unknotted if $X = S^k$, locally unknotted if $X = \Delta^k$. If f and g are PL-homeomorphisms of S^n that are ambient isotopic, and if $f \mid i(X) = g \mid i(X)$, then f and g are PL ambient isotopic fixing i(X).

THEOREM 2. Let $\Sigma^k \subset S^n$ be unknotted, $n \ge 5$, $k \ne 3$, and f and g be homeomorphisms S^n that are isotopic and agree on Σ . Then f and g are ambient isotopic fixing Σ .

If $k \leq n-3$, then Theorem 1 is a special case of [2]. Note that in Theorem 2, we do not require f and g to be PL.

The key step in the proof of these theorems is

LEMMA 3. Let X be a k-simplex in S^n or the standard k-sphere $S^k \subset S^n$. If f is an orientation preserving PL-homeomorphism of S^n