ON THE FUNDAMENTAL UNIT OF A PURELY CUBIC FIELD

RONALD J. RUDMAN

Let $a = D^3 + d$, where a, D, d are rational integers with D, a > 0, |d| > 1, and $d | 3D^2$. It is proved that the fundamental unit of the field $Q(\omega)$, where $\omega = \sqrt[3]{a}$, is $(\omega - D)^3/d$ with only six exceptions.

1. Introduction. The purpose of this paper is to establish the following result:

THEOREM 1. Let $a = D^3 + d$, where $a, D, d \in Z$, with a, D > 0, |d| > 1, and a cubefree. Then $\varepsilon = (\omega - D)^3/d$, where $\omega = \sqrt[3]{a}$, is a unit of $K = Q(\omega)$ if and only if $d | 3D^2$. Moreover, in this case $\varepsilon =$ η , the fundamental unit of K, except for (D, d) = (2, -6), (1, 3), (2, 2), (3, 1), and (5, -25), where $\varepsilon = \eta^2$, and (2, -4), where $\varepsilon = \eta^3$.

Here, Z, Q denote respectively the rational integers and the field of rationals.

Theorem 1 is an extension of a result of Stender [4], who showed that when

- $(\,1\,) \hspace{1.5cm} a = D^{\scriptscriptstyle 3} + d \;, \hspace{1.5cm} d \mid D, \; d > 1$
- $(\,2\,) \hspace{1.5cm} a \,=\, D^{\scriptscriptstyle 3} \,+\, 3d \;, \hspace{1.5cm} d \mid D, \; 3d \,\leq D, \; d > 0$
- $(\,3\,) \hspace{1.5cm} a = D^3 + 3D \;, \hspace{1.5cm} D \geqq 2 \;,$
- $(\ 4\) \qquad \qquad a = D^{\scriptscriptstyle 3} d \;, \qquad d \mid D, \; 4 < 4d \leqq D \;,$

or

$$(5)$$
 $a = D^3 - 3d$, $d \mid D, \ 12d \leq D, \ d > 0$

 $\varepsilon = (\omega - D)^3/(\omega^3 - D^3) = \eta$, except for (D, d) = (2, 2) in (1), where $e = \eta^2$. The case d = 1 in (1) and (4) had already been settled by Nagell [2], who proved that $\varepsilon = \eta$ with the single exception of a = 28, when $\varepsilon = \eta^2$. The method of proof used here follows [4].

2. Preliminaries. We now make the assumption that $d \mid 3D^2$.

Since a is cubefree we put $a = mn^2$ with m squarefree. Also, d is cubefree, as $d \mid 3a$.

Let $\bar{a} = m^2 n$, $\bar{\omega} = \sqrt[3]{a}$, and ζ be the fundamental unit of the ring $R = [1, \omega, \bar{\omega}]$. It is well known that if $a \not\equiv \pm 1 \pmod{9}$, an integral basis for K is $\langle 1, \omega, \bar{\omega} \rangle$ (a field of the first kind). However, if $a \equiv \pm 1 \pmod{9}$, an integral basis for K is given by