ON THE FUNDAMENTAL UNIT OF A PURELY CUBIC FIELD

Ronald J. Rudman

Let $a=D^{3}+d$, where a, D, d are rational integers with $D, a>0,|d|>1$, and $d \mid 3 D^{2 \cdot}$ It is proved that the fundamental unit of the field $Q(\omega)$, where $\omega=\sqrt[3]{a}$, is $(\omega-D)^{3} / d$ with only six exceptions.

1. Introduction. The purpose of this paper is to establish the following result:

Theorem 1. Let $a=D^{3}+d$, where $a, D, d \in Z$, with $a, D>0$, $|d|>1$, and a cubefree. Then $\varepsilon=(\omega-D)^{3} / d$, where $\omega=\sqrt[3]{a}$, is a unit of $K=Q(\omega)$ if and only if $d \mid 3 D^{2}$. Moreover, in this case $\varepsilon=$ η, the fundamental unit of K, except for $(D, d)=(2,-6),(1,3)$, $(2,2),(3,1)$, and $(5,-25)$, where $\varepsilon=\eta^{2}$, and $(2,-4)$, where $\varepsilon=\eta^{3}$.

Here, Z, Q denote respectively the rational integers and the field of rationals.

Theorem 1 is an extension of a result of Stender [4], who showed that when

$$
\begin{array}{ll}
a=D^{3}+d, & d \mid D, d>1 \\
a=D^{3}+3 d, & d \mid D, 3 d \leqq D, d>0 \\
a=D^{3}+3 D, & D \geqq 2, \\
a=D^{3}-d, & d \mid D, 4<4 d \leqq D \tag{4}
\end{array}
$$

or

$$
\begin{equation*}
a=D^{3}-3 d, \quad d \mid D, 12 d \leqq D, d>0 \tag{5}
\end{equation*}
$$

$\varepsilon=(\omega-D)^{3} /\left(\omega^{3}-D^{3}\right)=\eta$, except for $(D, d)=(2,2)$ in (1), where $e=\eta^{2}$. The case $d=1$ in (1) and (4) had already been settled by Nagell [2], who proved that $\varepsilon=\eta$ with the single exception of $a=$ 28 , when $\varepsilon=\eta^{2}$. The method of proof used here follows [4].
2. Preliminaries. We now make the assumption that $d \mid 3 D^{2}$.

Since a is cubefree we put $a=m n^{2}$ with m squarefree. Also, d is cubefree, as $d \mid 3 a$.

Let $\bar{a}=m^{2} n, \bar{\omega}=\sqrt[3]{a}$, and ζ be the fundamental unit of the ring $R=[1, \omega, \bar{\omega}]$. It is well known that if $a \not \equiv \pm 1(\bmod 9)$, an integral basis for K is $\langle 1, \omega, \bar{\omega}\rangle$ (a field of the first kind). However, if $a \equiv \pm 1(\bmod 9)$, an integral basis for K is given by

