FACTORED CODIMENSION ONE CELLS IN EUCLIDEAN *n*-SPACE

ROBERT J. DAVERMAN

Seebeck has proved that if the *m*-cell *C* in Euclidean *n*-space E^n factors *k* times, where $m \leq n-2$ and $n \geq 5$, then every embedding of a compact *k*-dimensional polyhedron in *C* is tame relative to E^n . In this note we prove the analogous result for the case $m+1=n \geq 5$ and $n-k \geq 3$. In addition we show that if *C* factors 1 time, then each (n-3)-dimensional polyhedron properly embedded in *C* can be homeomorphically approximated by polyhedra in *C* that are tame relative to E^n .

Following Seebeck [8] we say that an *m*-cell C in E^n factors k times if for some homeomorphism h of E^n onto itself and some (m - k)-cell B in E^{n-k} , $h(C) = B \times I^k$, where I^k denotes the k-fold product of the interval I naturally embedded in E^k and where

$$B imes I^k \subset E^{n-k} imes E^k = E^n$$

is the product embedding.

In another paper [6] the author has studied results comparable to Seebeck's for factored cells in E^4 , but the techniques employed here differ slightly from those used in [6] and [8]. The main result generalizes work of Bryant [2], and the final section here expands on his methods to obtain a strong conclusion about tameness of all subpolyhedra in certain factored cells.

1. Definitions and Notation. For any point p in a metric space S and any positive number δ , $N_{\delta}(p)$ denotes the set of points in S whose distance from p is less than δ .

The symbol Δ^2 denotes a 2-simplex fixed throughout this paper, $\partial \Delta^2$ its boundary, and Int Δ^2 its interior.

Let A denote a subset of a metric space X and p a limit point of A. We say that A is locally simply connected at p, written 1-LC at p, if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each map of $\partial \varDelta^2$ into $A \cap N_{\delta}(p)$ can be extended to a map of \varDelta^2 into $A \cap N_{\varepsilon}(p)$. Furthermore, we say that A is uniformly locally simply connected, written 1-ULC, if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each map of $\partial \varDelta^2$ into a δ -subset of A can be extended to a map of \varDelta^2 into an ε -subset of A. Similarly, we say that A is locally simply connected in X at p, written 1-LC in X at p, if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each map of $\partial \varDelta^2$ into $A \cap N_{\delta}(p)$ extends to a map of \varDelta^2 into $N_{\varepsilon}(p)$, and we say that A is uniformly locally simply connected in X (1-ULC in X) if the corresponding uniform property is satisfied.