ENDOMORPHISM RINGS OF FINITELY GENERATED PROJECTIVE MODULES

ROBERT W. MILLER

Over a ring A let P_A be a finitely generated projective right A-module with A-endomorphism ring B. Anderson has called P_A an injector, perfect injector, projector, perfect projector, if the functor $F = {}_BP \otimes_A ()$ preserves injectives, injective hulls, projectives, projective covers, respectively. Call P_A a flatjector if F preserves flat modules. Injectors, flatjectors, and projectors are characterized. The radical of a module over B is studied, and necessary and sufficient conditions are given for the radical of B to be left T-nilpotent. Perfect injectors are characterized. Previous characterizations of perfect projectors have assummed the ring A to be left perfect. Here characterizations are obtained using substantially weaker conditions on P_A .

Over a ring A let P_A be a finitely generated projective right Amodule with A-endomorphism ring B. Let T be the trace of P_A and $P^* = \operatorname{Hom}_A(P, A)$ be the A-dual of P. Injectors, flatjectors, and projectors are characterized in §2, the characterizations of injectors and projectors being extensions of results due to Anderson [1]. For example, P_A is a flatjector if and only if $_{B}P$ (equivalently $_{A}P^* \otimes _{B}P$) is flat. P_A is a projector if and only if the natural map $\eta: _{A}P^* \otimes _{B}P \to _{A}T$ is a projective cover. It is shown that P_A is a flatjector if and only if $_{A}P^*$ is an injector. Furthermore, every projector is a flatjector, the two being equivalent for perfect rings. Examples are given of a flatjector that is not a projector and a nonperfect ring where every flatjector is a projector.

In §3 it is shown that the *B*-radical of ${}_{B}P \otimes {}_{A}X$ is isomorphic to ${}_{B}P \otimes {}_{A}J(TX)$. In particular the *B*-radical of ${}_{B}P$ is isomorphic to ${}_{B}P \otimes {}_{A}J(T)$. A definition of *U*-dominant codimension dual to the definition of *V*-dominant dimension given in [8] is introduced. The radical *N* of *B* being left *T*-nilpotent is characterized in terms of the full subcategories $\mathscr{C}_{1}({}_{A}P^{*})$ of ${}_{A}\mathfrak{M}$ consisting of all left *A*-modules of ${}_{A}P^{*}$ -dominant codimension ≥ 1 , and $\mathfrak{D}_{1}(Q_{A})$ of \mathfrak{M}_{A} consisting of all right *A*-modules of Q_{A} -dominant dimension ≥ 1 (where $Q_{A} = \operatorname{Hom}_{B}(P, W)$ for ${}_{B}W$ an injective cogenerator). It is shown that *N* is left *T*-nilpotent if and only if *JT* is left *T*-nilpotent, or equivalently $J(\bigoplus_{I} P^{*})$ is small in $\bigoplus_{I} P^{*}$ for any index set *I*.

In §4 perfect injectors are characterized in terms of their trace ideal and certain conditions on large submodules. Anderson [1] has studied perfect projectors when the ring A is left perfect. Here