ON THE NUMBER OF POLYNOMIALS OF AN IDEMPOTENT ALGEBRA, II

G. Grätzer and J. Plonka

Abstract

In part I of this paper a conjecture was formulated according to which, with a few obvious exceptions, the sequence $\left\langle p_{n}(\mathfrak{U})\right\rangle$ of an idempotent algebra is eventually strictly increasing. In this paper this conjecture is verified for idempotent algebras satisfying $p_{2}(\mathfrak{l})=0, p_{3}(\mathfrak{l})>0$, and $p_{4}(\mathfrak{l})>0$. In fact, somewhat more is proved:

Theorem. Let \mathfrak{U} be an idempotent algebra with no essentially binary polynomial and with essentially ternary and quaternary polynomials. Then the sequence

$$
p_{3}(\mathfrak{l u}), p_{4}(\mathfrak{l}), \cdots, p_{n}(\mathfrak{U}), \cdots
$$

is strictly increasing, that is, for all $n \geqq 2$

$$
p_{n}(\mathfrak{l})+1 \leqq p_{n+1}(\mathfrak{l}) .
$$

The proof starts in §2 where a lemma of K. Urbanik is modified to show that the proof splits naturally into three cases. §§3 and 4 handle the first two cases. In §5 the third case is analyzed and it is proved that it splits into two further cases that are settled in $\S \S 6$ and 7. In each of these sections examples are provided that the case under consideration is not void.

For the undefined concepts and basic results the reader is referred to [2].

Examples of algebras satisfying the conditions of the Theorem abound. On a two element Boolean algebra $\{0,1\}$ the operation $(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$ defines such an algebra.
2. The classification. An algebra $\mathfrak{U}=\langle A ; F\rangle$ is idempotent if every operation $f \in F$ has type (arity) >0, and $f(a, \cdots, a)=a$ for all $a \in A$. All algebras considered in this paper are assumed to have more than one element. An n-ary polynomial p of \mathfrak{l} (that is, an n-ary function or A composed from functions in F) depends on x_{i} $(1 \leqq i \leqq n)$ if there exist $a_{1}, \cdots, a_{n}, a_{i}^{\prime} \in A$ with $p\left(a_{1}, \cdots, a_{i}, \cdots, a_{n}\right) \neq$ $p\left(a_{1}, \cdots, a_{i}^{\prime}, \cdots, a_{n}\right) ; p$ is essentially n-ary, if p depends on x_{1}, \cdots, x_{n}. For $n \geqq 2$, let $p_{n}(\mathfrak{l})$ denote the number of essentially n-ary polynomials.

In this paper we shall deal exclusively with idempotent algebras satisfying

$$
p_{2}(\mathfrak{U})=0, p_{3}(\mathfrak{u}) \neq 0, \quad \text { and } \quad p_{4}(\mathfrak{U}) \neq 0 .
$$

The sequence $\left\langle p_{n}(\mathfrak{l d})\right\rangle$ is strictly increasing because \mathfrak{l} must have

