THE LATTICE OF CLOSED IDEALS AND *a**-EXTENSIONS OF AN ABELIAN *l*-GROUP

ROGER BLEIER AND PAUL CONRAD

An *l*-ideal A of an *l*-group G is closed if $x \in A$ whenever $x = \lor a_i, 0 \leqslant a_i \in A$. The intersection of any collection of closed *l*-ideals of G is again a closed *l*-ideal of G. Hence the set $\mathscr{K}(G)$ of all closed *l*-ideals of G is a complete lattice under inclusion. In the present paper this lattice is studied, as well as *l*-group extensions which preserve it. A common generalization of the essential closure of an archimedean *l*-group and the Hahn closure of a totally-ordered abelian group is obtained.

Unless otherwise specified all *l*-groups will be assumed abelian. Set-theoretic union and intersection will be written \cup and \cap , respectively. The lattice of all *l*-ideals of an *l*-group G will be denoted $\mathscr{L}(G)$; the join operation in $\mathscr{L}(G)$ will be written \vee (to be differentiated by context from the *l*-group operation). The join operation in $\mathscr{K}(G)$ will be written \bigcup . A subset D of a partially ordered set S will be called a *dual ideal* if $x \in D$ whenever $x \ge y$ for some $y \in D$.

G(g) will denote the smallest *l*-ideal of *G* containing $g \in G$. \overline{A} will denote the smallest closed *l*-ideal of *G* containing $A \in \mathscr{L}(G)$. We have $\overline{A}^+ = \{ \bigvee a_i \mid 0 \leq a_i \in A \}$. ([5], Lemma 3.2).

 $A \in \mathscr{L}(G)$ is a regular subgroup of G if it is maximal in $\mathscr{L}(G)$ without some $g \in G$; in this case A is also called a value of g. If A is the only value of some $g \in G$, then A is a special subgroup of G. Each special subgroup of G is closed. ([4], Prop. 4.1). If each $g \in G$ has only finitely many values, then G is finite-valued. An l-ideal of G is prime if it is the intersection of a chain of regular subgroups of G. An l-ideal of G which contains a closed prime subgroup of G is itself a closed prime subgroup. ([5], Lemma 3.3).

We conclude the introduction by reviewing the important results in [10]. Let Λ be a root system (i.e., Λ is a partially ordered set and no two noncomparable elements of Λ have a lower bound in Λ). Let $V(\Lambda, R)$ denote the group of all real-valued functions on Λ whose support satisfies the ACC. $\lambda \in \Lambda$ is a maximal component of $v \in V(\Lambda, R)$ if λ belongs to the support of v but no element of Λ exceeding λ belongs to the support of v. Define v > 0 if and only if $v(\lambda) > 0$ for each maximal component λ of v. Then $V(\Lambda, R)$ is an *l*-group. If $\lambda \in \Lambda$, then $V_{\lambda} = \{v \in V(\Lambda, R) \mid v(\alpha) = 0$ for all $\alpha \ge \lambda\}$ is a closed regular subgroup of $V(\Lambda, R)$; moreover, these are the only closed regular subgroups of $V(\Lambda, R)$.