A HAUSDORFF-YOUNG THEOREM FOR REARRANGEMENT-INVARIANT SPACES

COLIN BENNETT

The classical Hausdorff-Young theorem is extended to the setting of rearrangement-invariant spaces. More precisely, if $1 \leq p \leq 2$, $p^{-1} + q^{-1} = 1$, and if X is a rearrangement-invariant space on the circle T with indices equal to p^{-1} , it is shown that there is a rearrangement-invariant space \hat{X} on the integers Z with indices equal to q^{-1} such that the Fourier transform is a bounded linear operator from X into \hat{X} . Conversely, for any rearrangement-invariant space Y on Z with indices equal to $q^{-1}, 2 < q \leq \infty$, there is a rearrangement-invariant space \hat{Y} on T with indices equal to p^{-1} such that \mathcal{T} is bounded from \check{Y} into Y.

Analogous results for other groups are indicated and examples are discussed when X is L^p or a Lorentz space L^{pr} .

By $L^p = L^p(T)$ we denote the usual Lebesgue space on the unit circle *T*, and by $l^p = l^p(Z)$ the corresponding space on the integers *Z*. The index conjugate to *p* will always be denoted by *q* so that $p^{-1} + q^{-1} = 1$. The Fourier transform \mathscr{T} defined by

$$(\mathscr{T}f)(n)=\widehat{f}(n)=rac{1}{2\pi}\int_{0}^{2\pi}f(heta)e^{-in heta}d heta$$
 ,

is a bounded linear operator from L^1 into l^{∞} and from L^2 into l^2 so by the M. Riesz-Thorin interpolation theorem ([9], p. 95), \mathscr{T} is bounded also from L^p into l^q whenever 1 . This is the assertion ofthe classical Hausdorff-Young theorem ([9], p. 101).

Hardy and Littlewood ([5]; [9], p. 109) showed that \mathscr{T} is bounded from L^p , $1 , into <math>l_p^q$, the "weighted" Lebesgue space of all sequences $\{c_n\}$ for which

$$||c||_{l_{p}^{q}} = \left\{\sum_{-\infty}^{\infty} |c_{n}| p(1+|n|)^{p-2}\right\}^{1/p} = \left\{\sum_{-\infty}^{\infty} [(1+|n|)^{1/q}|c_{n}|]^{p}(1+|n|)^{-1}\right\}^{1/p}$$

is finite; since $l_p^{q} \subseteq l^q$, as a simple computation shows, their result improves on that of Hausdorff and Young. A still sharper version, again due to Hardy and Littlewood ([6]; [9], p. 123), is based upon the observation that even the (symmetric) decreasing rearrangement of the sequence $\{\hat{f}(n)\}$ belongs to l_p^q , or, what amounts to the same thing, $\mathcal{T}f$ belongs to the Lorentz space l^{q_p} (cf. [3], [4], and [9] for the precise statements and definitions). Thus \mathcal{T} is a bounded