MAXIMAL INVARIANT SUBSPACES OF STRICTLY CYCLIC OPERATOR ALGEBRAS

MARY R. EMBRY

A strictly cyclic operator algebra \mathscr{A} on a complex Banach space $X(\dim X \ge 2)$ is a uniformly closed subalgebra of $\mathscr{L}(X)$ such that $\mathscr{A}x = X$ for some x in X. In this paper it is shown that (i) if \mathscr{A} is strictly cyclic and intransitive, then \mathscr{A} has a maximal (proper, closed) invariant subspace and (ii) if $A \in \mathscr{L}(X)$, $A \neq zI$ and $\{A\}'$ (the commutant of A) is strictly cyclic, then A has a maximal hyperinvariant subspace.

1. Notation and terminology. Throughout the paper X is a complex Banach space of dimension greater than one and $\mathscr{L}(X)$ is the algebra of continuous linear operators on X. \mathscr{A} will denote a uniformly closed subalgebra of $\mathscr{L}(X)$ which is *strictly cyclic* and x_0 will be a *strictly cyclic vector* for \mathscr{A} : that is, $\mathscr{A}x_0 = X$. We do not insist that the identity element I of $\mathscr{L}(X)$ be an element of \mathscr{A} .

If $\mathscr{B} \subset \mathscr{L}(X)$, then the commutant of \mathscr{B} is $\mathscr{B}' = \{E: E \in \mathscr{L}(X) \$ and EB = BE for all B in $\mathscr{B}\}$. We shall use the terminology of "invariant" and "transitive" as follows: if $M \subset X$ and $\mathscr{B} \subset \mathscr{L}(X)$, then (i) M is invariant under \mathscr{B} if $\mathscr{B}M = \{Bm: B \in \mathscr{B} \text{ and } m \in M\} \subset$ M, (ii) M is an invariant subspace for \mathscr{B} if M is invariant under \mathscr{B} and M is a closed, nontrivial ($\neq \{0\}, X$) linear subspace of X, (iii) \mathscr{B} is transitive if \mathscr{B} has no invariant subspace and intransitive if \mathscr{B} has an invariant subspace. Further, if $A \in \mathscr{L}(X)$ and $\{A\}'$ is intransitive, then each invariant subspace of $\{A\}'$ is called a hyperinvariant subspace of A. Finally an invariant subspace of \mathscr{B} is maximal if it is not properly contained in another invariant subspace of \mathscr{B} .

2. Introduction. Strictly cyclic operator algebras have been studied by A. Lambert, D. A. Herrero, and the auther of this paper. (See for example [2]-[6].) One of the major results in [2, Theorem 3.8], [3, Theorem 2], and [6, Theorem 4.5] is that a transitive subalgebra of $\mathscr{L}(X)$ containing a strictly cyclic algebra is necessarily strongly dense in $\mathscr{L}(X)$. In each of three developments the following is a key lemma: The only dense linear manifold invariant under a strictly cyclic subalgebra of $\mathscr{L}(X)$ is X. In Lemma 1 we shall present a generalization of this lemma which will be useful in the study of maximal invariant subspaces and noncyclic vectors of a strictly cyclic algebra \mathscr{A} .

LEMMA 1. If M is invariant under \mathscr{A} and $x_0 \in \overline{M}$, then M = X.